
Roma Tre University

Department of Mathematics and Physics
Doctoral School in Mathematics and Physics XXXII Cycle

Ph.D. Thesis in Physics

Adaptive and Fractal Data Analysis of
Seismic Monitoring at the Virgo

Interferometer

Author: Alessandro Longo Tutor: Prof. Wolfango Plastino
Coordinator: Prof. Giuseppe Degrassi



Contents

1 Introduction 10
1.1 Detecting Gravitational waves . . . . . . . . . . . . . . . . . . . . . 10
1.2 Virgo Interferometer: Principles of Operation . . . . . . . . . . . . 11
1.3 Sensitivity Curve and Fundamental Noises . . . . . . . . . . . . . . 13

1.3.1 Amplitude Noise in the Laser Output Power . . . . . . . . . 14
1.3.2 Mechanical Thermal Noise . . . . . . . . . . . . . . . . . . . 14
1.3.3 Radiation Pressure Noise from the laser Light . . . . . . . . 15

1.4 Seismic Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 The Superattenuator Design and Working Principle . . . . . . . . . 16

1.5.1 The Inverted Pendulum . . . . . . . . . . . . . . . . . . . . 17
1.5.2 The Seismic Filters . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.3 The Last Stage . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Newtonian Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6.1 Mitigation of Newtonian Noise . . . . . . . . . . . . . . . . . 20

1.7 Advanced Virgo Interferometer: A second Generation Detector . . . 21

2 Methodology: Adaptive and Fractal Algorithms 23
2.1 Outline of adopted Methodology . . . . . . . . . . . . . . . . . . . . 23
2.2 Hilbert Spectral Analysis: The instantaneous frequency, amplitude

and bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1 Interpretation of instantaneous frequency and bandwidth . . 27

2.3 Empirical Mode Decomposition . . . . . . . . . . . . . . . . . . . . 27
2.4 Hilbert-Huang Transform: a time-frequency-energy representation

of nonlinear nonstationary data . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Marginal Hilbert Spectra, Instantaneous Energy and Degree

of Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Mode mixing and noise assisted methods . . . . . . . . . . . . . . . 32
2.6 Statistical significance test of IMFs . . . . . . . . . . . . . . . . . . 32
2.7 Time varying filter EMD (tvf-EMD) . . . . . . . . . . . . . . . . . 34

2.7.1 B-splines approximation of a signal . . . . . . . . . . . . . . 34
2.7.2 Estimation of local frequency cutoff . . . . . . . . . . . . . . 35
2.7.3 The intermittency problem: frequency realignment to miti-

gate mode mixing . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7.4 Sifting of tvf-EMD: Stopping criterion based on instanta-

neous bandwidth and local narrow-band signal extraction . . 39
2.8 Fractal Algorithms: Detrended Fluctuation Analysis and Local Hurst

Exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2



2.9 Tool for Adaptive time series analysis based on tvf-EMD algorithm 42

3 Results 45
3.1 Testing: NR Waveform in Purple Noise . . . . . . . . . . . . . . . . 47
3.2 Adaptive Denoising of Acoustic Noise Injections . . . . . . . . . . . 49

3.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Results of Adaptive Denoising . . . . . . . . . . . . . . . . . 50
3.2.3 Local Hurst Exponent of Seismometer Data . . . . . . . . . 53
3.2.4 Completeness of tvf-EMD in the Frequency Domain . . . . . 53
3.2.5 Hilbert Huang Transform and Denoising Threshold Parameter 57

3.3 Local Hurst Exponent for Seismometer Array Monitoring WEB . . 59
3.3.1 Array of seismometers for Newtonian Noise Characterisation 59
3.3.2 Local Hurst Exponent of Seismometer Array . . . . . . . . . 60

3.4 Yearly Modulation of surface 7Be activity concentration . . . . . . 63
3.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.2 Obtained Results: Trend, Yearly cycles and Outliers . . . . . 63

4 Discussion 69

Appendices 72

A Estimate of spectral indexes β > 2 with the Burg Maximum En-
tropy Method 73

B Fractional Gaussian noise (fGn) and fractional Brownian motion
(fBm) 77

C Hurst Exponent of fGn and fBm noises: EMD based estimation 79

D Bedrosian Product Theorem 82

E B-splines 83

F Scattered Light Noise Hunting at Virgo with Empirical Mode De-
composition 85

G 1/f 2.5 Noise Hunting with Multifractal Detrended Fluctuation Anal-
ysis: Characterisation of Local Hurst Exponent of C11 data 91

Bibliography 93

3



List of acronyms

Advanced Virgo (AdV)

Amplitude and frequency modulations (AM-FM)

Complete Ensemble EMD with adaptive noise (CEEMDAN)

Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO)

Crosscorrelation (xcorr)

Detrended Fluctuation Analysis (DFA)

Differential Arm Motion (DARM)

Empirical Mode Decompoition (EMD)

End Mirror (EM)

Ensemble Empirical Mode Decomposition (EEMD)

Fractional Gaussian noise (fGn)

Fractional Brownian motion (fBm)

Full Width at Half Maximum (FWHM)

General Relativity (GR)

Gravitational waves (GW)

High Purity Germanium Detector (HPGe)

Hilbert Huang Spectral Analysis (HHSA)

Hilbert Huang Transform (HHT)

Hilbert Spectral Analysis (HSA)

Interferometer (ifo)

Input Mode Cleaner (IMC)

Input Mirror (IM)

Instantaneous amplitude (IA)

Instantaneous bandwidth (IB)

4



Instantaneous frequency (IF)

International Monitoring System (IMS)

Intertropical Convergence Zone (ITCZ)

Intrinsic Mode Functions (IMFs)

Mean squared error (MSE)

Mean absolute error (MAE)

Multistep Time Series Analysis (MTsA)

North End Building (NEB)

Newtonian noise (NN)

Numerical Relativity (NR)

Peak signal to noise ratio (PSNR)

Power Recycling cavity length (PRCL)

Power Recycling Mirror (PRM)

Signal Recycling (SR)

Signal Recycling Mirror (SRM)

Signal to noise ratio (SNR)

Standard Temperature and Pressure (STP)

Superattenuator (SA)

Time varying filter Empirical Mode Decompoition (tvf-EMD)

Weighted Average Instantaneous Frequency (WAIF)

West End Building (WEB)

5



List of Figures

Figure 1.1: GW strain

Figure 1.2: Optical layout of Michelson interferometer

Figure 1.3: Sensitivity curve and noises

Figure 1.4: Schematic of Virgo Superattenuator

Figure 1.5: Seismic filters

Figure 1.6: Newtonian noise budget

Figure 1.7: Sensitivity of Advanced Virgo

Figure 1.8: Optical configuration of Advanced Virgo

Figure 2.1: EMD algorithm procedure

Figure 2.2: Mode mixing

Figure 2.3: Spread lines for significance against white noise

Figure 2.4: Lowpass behaviour of B-splines

Figure 2.5: Frequency realignment step of tvf-EMD

Figure 2.6: Detrended Fluctuation Analysis

Figure 2.7: Flowchart of adopted methodology

Figure 3.1: Algorithm testing on NR waveform in purple noise

Figure 3.2: Hilbert transform of NR waveform in purple noise

Figure 3.3: Recordings from fourth acoustic noise injection

Figure 3.4: First acoustic noise injection

Figure 3.5: Second acoustic noise injection

Figure 3.6: Third acoustic noise injection

Figure 3.7: Fourth acoustic noise injection

Figure 3.8: Local Hurst exponent of seismometer data

Figure 3.9: FFT of persistent IMFs

6



Figure 3.10: FFT of antipersistent IMFs

Figure 3.11: Hilbert Huang transform of triaxial seismometer data

Figure 3.12: Coordinates of 38 seismometer array

Figure 3.13: Local Hurst exponent of two sensors of the array

Figure 3.14: Average values of Hurst exponent for the seismometer array

Figure 3.15: Trends of 7Be time series

Figure 3.16: Annual oscillation of 7Be time series

Figure 3.17: Occurrence of outliers in 7Be residual time series

Figure 3.18 Cross-correlations between 7Be and temperature annual cycle

Figure A.1 Flowchart of MTsA algorithm

Figure A.2 Comparison of spectral index estimation

Figure A.3 Noises of different spectral indexes

Figure B.1 Fractional gaussian noise and fractional Brownian motion dualism

Figure C.1 Fractional noises with different Hurst exponent

Figure C.2 Average PSD of fGn time series and comparison with IMFs spectra

Figure E.1 B-splines of degrees 0 to 3

Figure F.1 Fourier spectra of DARM with and without scattered light

Figure F.2 Hardware injection and spectrogram of PRCL

Figure F.3 Results of scattered light noise hunting with EMD

Figure F.4 Hardware injections

Figure F.5 Results of scattered light noise hunting with EMD

Figure G.1 1/f 2.5 noise hunt with fractal algorithms

7



Outline
Detector characterisation plays a crucial role in the search for Gravitational waves
(GW) with a ground based interferometer (ifo) such as Virgo [1]. Both environ-
mental and anthropogenic noise sources can affect the sensitivity in the detection
frequency band, a relevant example being Newtonian noise (NN) [2][3]. For this
reason, sensors are deployed both indoor and outdoor at the detector site, in order
to monitor stable conditions of the detector over time. Data are hence acquired
in the form of time series and various algorithms are employed for detector char-
acterisation purposes a useful and widely used tool to investigate transient noise
being Omicron [4].
In the framework of this Thesis, an algorithm for time series analysis have been
developed and tested on data from different physical systems. It is based on a com-
bination of both fractal [5] and adaptive techniques [6]. The algorithm developed
for this Thesis has been applied to characterise data of

• Seismometer array recording at the Virgo West End Building (WEB) for
Newtonian Noise (NN) characterisation purposes. In this case is found that
fractal analysis allows to characterise and discriminate among sensors placed
in different parts of the room.

• Seismometer recording during four different acoustic noise injections per-
formed at the North End Building (NEB) of the Virgo ifo for detector char-
acterisation purposes. In this case, is found that the adopted approach allows
to separate the waveform due to the acoustic noise injections from the un-
derlying nonlinear non stationary seismic noise.

• Activity concentration of 7Be, sampled at ground level by the International
Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty
Organisation (CTBTO). In this case, the annual oscillatory modes are ex-
tracted and characterised. It is found that the time of occurrence of the
yearly maxima of 7Be is shifted in latitude, possibly due to the seasonal shift
of the Hadley cell and of the Intertropical Convergence Zone (ITCZ), as also
reported in [7].

The remaining of this Thesis is organised as follows.

• In Chapter1 the main sources of noise affecting the sensitivity curve of Virgo
are briefly summarised and a description of NN and seismic noise is given.

• In chapter 2, the adopted methodology for time series analysis is widely
described. In particular, the Empirical Mode Decompoition (EMD) and its
recently introduced time varying version (tvf-EMD), are described in 2.3 and
2.7, respectively. The adopted methodology is described in 2.9.

• Chapter 3 presents the results obtained applying such empirical algorithms
to seismometer and 7Be data

• Conclusions and discussion of possible future developments of the present
research work is carried out in Chapter 4.
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Furthermore in appendix are reported results from characterisation of noise
properties, such as spectral index and persistency and results from noise hunting
performed using data of the Virgo ifo.

• In A are reported estimates of spectral indexes β > 2 using the Burg Maxi-
mum Entropy Method.

• In B Fractional Gaussian noise (fGn) and fractional Brownian motion (fBm)
are described.

• In C the Hurst Exponent of fGn and fBm noises are estimated using EMD.

• In D the Bedrosian Product Theorem is described.

• In E B splines are introduced and some of their properties described

• In F results from scattered light noise hunting at Virgo with EMD are pre-
sented.

• Finally, in G some results from the 1/f 2.5 noise hunt using fractal algorithms
are presented. The analysis was carried out using downsampled data from
the commissioning run C11 of the Virgo ifo.
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Chapter 1

Introduction

In this Chapter, a brief overview of how GW are generated and which sources
are accessible to ground based detectors is given in section 1.1 based on [8] while
operational principles of the Virgo Interferometer to detect them are described
in section 1.2, based on [9, 10]. In 1.3 the fundamental noises limiting detector
sensitivity are briefly summarised based on [1]. Seismic and Newtonian Noise are
described in more detail in 1.4 and 1.6 based on [3] and references therein.

1.1 Detecting Gravitational waves
GW are generated each time a massive object is accelerated and are predicted
by Einstein General Relativity (GR) theory [11]. GR geometrical interpretation
states that gravitation is the result of the curvature of space-time caused by mass
or energy density. GW are then deformations of space-time and are predicted to
travel at the speed of light. Considering small deviations of the metric tensor gµν
from Minkowski metric ηµν Einstein’s equations can be linearised giving a wave
equation for the quantity

hµν = gµν − ηµν (1.1)

with propagation speed equal to c. GW detection involves measuring time vari-
ations of h i.e. variations in the geometry of space-time locally. The order of
magnitude of the change of distance δL between two freely-falling test masses lo-
cated L meters apart caused by hµν is

δL ∝ h

2
L (1.2)

The effect on test masses due to a passing GW is illustrated in figure 1.1. The value
of the gravitational constant being very small, only compact astrophysical objects,
subject to high accelerations, produce waves with an amplitude that can be probed
with ground based detectors. The amplitude of a GW is inversely proportional to
the distance from the source which typically are coalescing binary neutron stars,
supernovae and black hole interactions. Nearby events have a higher amplitude
but are rare. Instead, events occurring at higher distance have lower amplitude
but are more frequent, a larger portion of the Universe being probed [8].
If events in nearby galaxies are considered, i.e. at a distance of around 20 Mpc,
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Figure 1.1: GW change distances between objects, while the objects themselves
locally remain at rest, by changing the metric of space-time. These changes occur
with opposing sign for orthogonal directions. In this figure this is illustrated for
one polarisation of a GW incident perpendicular to the paper. Shown is the effect
of a sinusoidal gravitational wave with period τ , for different times t. The distances
measured between the mirrors change by ±δl [10]. Figure taken from [10].

an amplitude of the order of h = 10−21 was taken as a reference when Virgo was
conceived [8]. Equation 1.2 shows that the measurement of δL has to be precise to
the order of 10−18m for an interferometer with arm length L = 1km.
Historically, GW detection has been attempted using two approaches, i.e. either
measuring the amplitude of oscillations of a resonant bar or measuring space-time
geometry variations as detected by freely falling masses using Michelson based
interferometers such as Virgo and LIGO [8]. The second approach is described in
more detail in the next sections.

1.2 Virgo Interferometer: Principles of Operation
In this section the principles of operation of the Virgo ifo are briefly described
based on [8]. A Michelson ifo is ideally suited for measuring the effect on test
masses, described in the previous section, of a travelling GW. The measurement
principle is schematically shown in figure 1.2: a laser beam is split into two beams,
sent along the orthogonal ifo arms, it reaches the end mirrors where it experiences
a phase shift due to the metric change caused by the GW. Then the beam returns
to the beam splitter, where it is recombined. The interference condition at the
beam splitter, i.e. the phase relation of the two returning beams, determines the
intensity on the photo detector [10].
Virgo detector, located in Cascina near Pisa (Italy) is a Michelson interferometer,
i.e. two perpendicular arms of equal length designed to cancel wavelength fluc-
tuations of the light source. As described in the previous section, the effect of a
travelling GW is to change the geometry of space-time. This results in a different
apparent length of each arm. The arm length difference δL gives the gravitational

11



Figure 1.2: Operational principle of a Michelson interferometer with power recy-
cling and Fabry-Perot resonant cavities. Figure from [8]

wave signal in terms of strain h

δL ∝ hL. (1.3)

The measurement of δL is obtained from the phase difference of the returning
beams, which is deduced from the intensity of the interference figure. The best
sensitivity is achieved by setting the interferometer at almost complete destructive
interference, i.e. dark fringe.
As described in [8], sensitivity is improved by introducing Fabry-Perot resonant
cavities in the arms. The optical path is enhanced, resulting in a larger phase
variation for a given arm length change. However, at high frequency, the GW
may change sign while the photons are stored in the cavity. This reduce the phase
response of the interferometer.
The Virgo arm length is L = 3km, while the optical path increase is a factor of 30,
giving an effective optical length of 90 km [8].
The sensitivity of the phase measurement is limited by photon counting statistics.
It can be improved by increasing the intensity of the light circulating in the ifo.
This is achieved with a recycling cavity, as can be seen in Figure 1.2. If the ifo is
set on dark fringe most of the light power goes back to the light source and this
light can be sent back to the ifo by installing an additional semi-reflective mirrors
at the entrance of the ifo itself. This increase the total circulating intensity. This
consist in forming an overall resonant cavity or recycling cavity [8].
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Figure 1.3: Sensitivity curve and main sources of noise affecting GW detection in
different frequency bands. Figure from [8]

1.3 Sensitivity Curve and Fundamental Noises
In this section, the fundamental noises affecting ground based interferometers are
briefly summarised, based on [8] and references therein.
Due to local gravity fluctuations ground-based interferometers are sensitive to grav-
itational waves with frequencies higher than a few Hz and at lower frequency a GW
detector has to operate in space while on the high side of the frequency band the
GW signal decreases due to source dynamics. The Virgo interferometer has been
designed to cover a frequency band starting from 10 Hz up to a few kHz. Expected
sources in this range are coalescing binary systems like neutron star or black hole
binaries, stellar collapses, rotating neutron stars, and possibly cosmological back-
ground radiation [8].
The Virgo sensitivity is limited by noise sources that can be grouped into different
categories

• The position of the test masses can fluctuate due to local perturbations, such
as residual seismic noise, local gravity fluctuations and thermal motion

• Other noise sources affect the detected signal without a real mirror displace-
ment, the main source being photon shot noise.

This provide with a sensitivity curve which is illustrated in Figure 1.3, which shows
the expected Virgo sensitivity, which is the h spectral amplitude of a wave that
would generate the same signal as the noise present in the detector, as a function
of frequency. Typical values are h̄ = 510−23

√
Hz

at 100 Hz, and h̄ = 310−21
√
Hz

at 10 Hz [8].
In the following, the main sources of noise affecting the sensitivity curve of ifo’s
such as Virgo are briefly described, based on [12]. Seismic and Newtonian noise
are instead discussed more in detail in section 1.4 and 1.6, respectively.
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1.3.1 Amplitude Noise in the Laser Output Power

A fundamental limit to the amplitude noise in a laser output is the shot noise in the
arrival rate of photons, which follows a Poisson statistic, and the noise generated
in the process of detection. The equivalent spectral noise displacement squared per
unit frequency is given by [12]

∆h2(f)

∆f
≥ hcλ

8π2εPb2e−b(1−R)
(1.4)

where h is the Planck constant, c the velocity of light, λ is the laser wavelength,
ε the quantum efficiency of the photodetector, P the laser output power, b the
number of passes in each ifo arm and R the reflectivity of the mirrors.

1.3.2 Mechanical Thermal Noise

As described in [12], there is two kinds of thermal noise, one is due to the thermal
motion of the center of mass of the masses on the horizontal suspensions and the
other is thermal excitation of the internal normal modes of the masses about the
center of mass. Thermal noise is modelled assuming the mechanical system is
driven by a stochastic driving force with spectral power density given by

∆F 2(f)

∆f
= 4kBTa (1.5)

where kB is Boltzmann constant, T the absolute temperature of the damping
medium and a = mω0/Q is the damping coefficient, which can be expressed as
a function of the mass m and resonant frequency ω0 of the mechanical system, and
Q is a quality factor. The spectral power density of the displacement, squared,
because of the stochastic force on an harmonic oscillator is

∆h2(f)

∆f
=

1

m2ω4
0

1

(1− z2)2 + (z/Q)2
4kBTω0m

Q
(1.6)

where z = ω/ω0. It is important to notice that the suspension should have a
resonant frequency much lower than that of the GW to be detected. In this case
z >> 1 and Q >> 1 and one obtain

∆h2(f)

∆f
=

4ω0kBT

ω4mQ
(1.7)

Instead the lowest normal mode frequencies of the internal motions of the masses,
i.e. the mirrors and other suspended optical components, should be higher than the
GW frequency. The entire suspended optical system should be as rigid as possible.
Hence, for the internal motions z << 1 while Q >> 1, giving

∆h2(f)

∆f
=

4kBT

ω3
0mQ

(1.8)

Beside reducing the temperature, thermal noise can be minimized using high Q
materials and suspensions with high Q. The GW frequency should not fall near
one of the mechanical resonance.
One problem with suspensions is that they have many degrees of freedom which
tend to cross-couple nonlinearly with each other [12].
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1.3.3 Radiation Pressure Noise from the laser Light

Fluctuation in the output power of the laser can induce mirror motion through the
radiation pressure of light. Radiation pressure noise can be treated similarly to
thermal noise. The spectral power density of a stochastic radiation pressure force
on one mirror is given by [12]

∆F 2
rad(f)

∆f
=

4b2hP

λc
(1.9)

where b is the number of times the light beam hits the mirror and P is the average
laser power

1.4 Seismic Noise
Below a few tens of Hz the detection is limited by seismic noise consisting of
vibrations of the ground causing motions on the optical components. In this way
the small mirror displacement caused by a gravitational wave will be masked by
seismic noise signals many orders of magnitude larger. Since many astrophysical
sources such as pulsars and coalescing binaries are expected to emit mainly low-
frequency gravitational waves, from a fraction of Hz to a few tens of Hz, the low
frequency detection threshold should be lowered as much as possible [13].
If the test masses were firmly attached to ground, the seismic noise would be larger
than any other source of noise previously described. The power spectrum due to
seismic noise can be approximated by [12]

∆h2(f)

∆f
∝ f−4 (1.10)

For this reason, the test masses are suspended and seismically isolated to min-
imize coupling with ground motion. The isolation provided by a single degree of
freedom suspension is given by

| ∆xm(f)/∆xl(f) |2= [(1− z2) + (2/Q)2)]2 + (z3/Q)2

[(1− z2)2 + (z/Q)2]2
(1.11)

where z = f/f0 with f0 being the resonant frequency of the suspension. In
Equation 1.11, ∆xm(f) is the displacement of a test mass at frequency f relative
to an inertial frame while ∆xl(f) is the motion of the Earth measured in that
reference frame. At frequencies for which it holds z >> 1, the isolation ratio is

| ∆xm(f)/∆xl(f) |2∼ f0
f

4

+
f0
f

2 1

Q2
(1.12)

To increase the rejection of seismic noise the suspension can be made longer or
alternatively several shorter periods suspensions can be used in series, since their
isolation factors multiply. The disadvantage is that in this case cross coupling
among moving objects is enhanced [12]. Regarding Virgo, an elaborate suspension
system has been developed, the superattenuator (SA), to support each optical
component of the ifo. The SA, described in 1.5, has been designed to suppress
the seismic noise transmission to the last stage of the mirror suspension system by
more than ten orders of magnitude starting from about 4 Hz [13].
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Figure 1.4: Schematic of the Virgo SA multi stage pendulum configuration. Figure
taken from [14].

1.5 The Superattenuator Design andWorking Prin-
ciple

The SA design is based on a multi stage pendulum configuration. Regarding
an n-stages pendulum, it can be shown that horizontal motion of its suspension
point, at a frequency f higher than the frequencies of the chain normal modes (
f > f0 > f1...fn), is transmitted to the suspended mass with an attenuation pro-
portional to f−2n. Furthermore, the ratio between the linear spectral density of
the last mass horizontal displacement, i.e. the optical component, and the linear
spectral density of the suspension point horizontal displacement, i.e. where the
excitation is applied, decreases as A/f 2n where A = f 2

0 · f 2
1 . . . f

2
n. This way, a very

large attenuation of the seismic noise, horizontal component, can be obtained at a
frequency above the highest pendulum resonance [13].
Unfortunately the end mirrors, suspended 3 km away in the ifo, are misaligned with
respect to one another by about 3 · 10−4 rad because of the different directions of
the plumb line on the curved Earth surface, meaning that they are not perfectly
perpendicular to the laser beam. Since any vertical vibration will be partially
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transmitted to the interferometer horizontal axis, i.e. along the laser beam direc-
tion, due to coupling among different degrees of freedom, vertical motion cause a
phase change of the laser beam [13].
Hence a vertical attenuation of seismic noise comparable with the horizontal one is
needed to reduce the frequency detection threshold. With a multistage pendulum
this is obtained by replacing each suspension wire with a spring, acting as verti-
cal oscillators. The spring should support a heavy load and, at the same time,
it should be soft enough to exhibit a low resonant frequency [13]. The SA of the
Virgo ifo consists of three fundamental elements

• The inverted pendulum

• The seismic filters, connected to each other by metallic suspension wires

• The last stage, i.e. the pay-load of the chain.

These are hereafter described based on [13].

1.5.1 The Inverted Pendulum

As described in [13], an ideal inverted pendulum can be conceived as a massless
vertical bar of length l connected to a ground by means of an elastic joint with
stiffness k and supporting a mass M on its top. In such a pendulum the gravity
acts as an anti-spring, which resonant frequency, given by

f0 =
1

2π

√
k

M
− g

l
(1.13)

can be lowered by increasing the mass M until mechanical instability is reached.
Such a mechanical structure can operate at very low frequency, down to a few
tens of mHz. Attaching the suspension point of the multistage pendulum chain on
the top of an inverted pendulum, this acts as an ultralow frequency pre-isolator
stage, suppressing a large part of the input horizontal seismic noise. The inverted
pendulum of Virgo SA can be seen in Figure 1.4.

1.5.2 The Seismic Filters

In the multi stage pendulum configuration of the SA, each pendulum mass has been
replaced by a rigid drum-shaped metallic structure acting as an oscillator in the
vertical direction, referred to as the seismic filters. Due to the working principle
of a multistage pendulum, a sequence of five mechanical filters provides with a
good seismic noise isolation of the optical components. In this Section, a brief
description of the seismic filters is given based on [13] while a detailed description
can be found in [15].
The mechanical filter has a 70 cm diameter, is 18.5 cm high, and is suspended as
close as possible to its center of mass. On the outer circumference of the filter
body, bottom part, a set of triangular cantilever spring blades is clamped, as can
be seen in Figure 1.5. Each blade, 3.5 mm thick and 385.5, mm long is bent at a
constant curvature radius and with a different base width according to the load to
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Figure 1.5: Schematic of the Virgo SA seismic filters. Figure taken from [13].

be supported. A nominal load, ranging between 48 and 96 kg hung on the blade
tip, forces it in a flat and horizontal position. The blade tip is connected by a
1 mm diameter wire to a central column, inserted through a hole in the center
of the filter body. Any movement of the central column, apart from the vertical
direction, is prevented by two sets of four centering wires accommodated on the
top and on the bottom of the filter body. A crossbar, bolted on the upper part
of the central column, is used as a mechanical support for the magnetic antispring
system, developed in order to reduce the vertical stiffness of the blades and to
confine the main vertical resonant frequency of each filter below the pendulum one.
The central column and the crossbar represent the moving part of the mechanical
filter from which the load of the lower stages is suspended by a steel suspension
wire. Connecting each filter to the next, a chain of mechanical oscillators in the
vertical direction is obtained [13].

1.5.3 The Last Stage

The last stage of the SA is suspended from the last mechanical filter of the chain,
which is historically called ”Filter 7”. It consists of a special anvil-shaped element
with four wings named ”Marionette”, a reference mass, and a mirror (see Figure
1.4). The marionette has been designed with four wings on which four small
permanent magnets are attached. In front of these magnets four coils attached at
the end of four aluminum pipes screwed on the bottom part of filter 7 are placed.
Four thin wires start from the marionette. The first pair supports the mirror in a
cradle and the second one, with the same technique, supports the reference mass
forming the last stage with a pendulum length of 0.7 m. The magnet-coil system
drives the marionette allowing control of the interferometer optical component in
three relevant degrees of freedom: the displacement along the beam direction,
the rotation around the vertical axis, and the rotation around the horizontal axis
perpendicular to the beam. The final control of the mirror displacement in the
beam direction is made by four coils acting on the magnets glued on the back side
of the mirror [13].
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Figure 1.6: NN estimate in 2 and 3 generation detectors. Figure taken from [16].

1.6 Newtonian Noise
In this section a brief description of NN main characteristics and mitigation strate-
gies is given based on [10, 3]. The ifo is sensitive to gravitational field gradients or
in other word to differential gravitational forces exerted on the end masses placed
at the ends of the ifo’s arms. Two physical effects are relevant

• Time dependent density variations in both atmosphere and ground

• Motions of inhomogenities in the mass distribution around the detector

A simplified estimate of NN is now given, based on [10]. The acceleration that a
test mass located at y experience, given a distribution of masses ρ(x, t) is

aNN(y, t) = G

∫
V

ρ(x, t)
x− y
|x− y|3dV (1.14)

where the integration is extended over the volume V and G is the gravitational
constant. For NN estimates is interesting the time variation of such quantity and
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the medium considered is an elastic solid. Hence, inserting in Equation 1.14 the
equation for the conservation of mass

ρ̇+∇ · Jm = 0 (1.15)

where Jm = ρ0(x)ξ̇(x, t) is the mass density current, ρ0 is the density of the medium
in static configuration and ξ is a small displacement, gives

aNN(y, ω) = G

∫
V

∇ · [ρ(x)ξ(x, ω)]
x− y
|x− y|3dV (1.16)

Two different effects are contained in this expression, as can be seen expanding
the derivative. The term proportional to ρ0∇ · ξ describes the fluctuation of the
local density due to the compression of the medium. Instead ξ · ∇ρ0 accounts for
movements of density inhomogeneities, e.g. at the surface boundary [10]. A theory
describing the connection in between seismic measurements and NN can be found
in [16]. As explained also in [10], the general idea is to decompose seismic motion
in normal modes, which are expected to behave as oscillators coupled to unknown
stochastic forces. By measuring quantities connected to seismic fluctuations such
as the power spectrum, information about the excitation of the oscillators can be
obtained and using Equation 1.16 it can be converted into an estimate of NN.
Third generation GW interferometric detectors will be underground detectors to
extend the GW detection frequency band to below the NN limit. Figure 1.6
(top) shows the expected noise budget for a second generation GW ifo detec-
tor while Figure 1.6 (bottom) shows a comparison between NN noise and the
planned sensitivity of a third generation detector, i.e. the Einstein Telescope (see
http://www.et-gw.eu/). It can be seen that NN becomes the most critical sensi-
tivity limit in the low frequency region [16].

1.6.1 Mitigation of Newtonian Noise

A brief description of NN mitigation techniques is now given based on [3] and ref-
erences therein.
As explained in [3], mitigation of NN without employing environmental data are
considered to be passive Newtonian-noise mitigation techniques. Among these, site
selection is one of them. In this case the quietest detector site should be identified,
in terms of seismic noise and atmospheric noise.
Opposite to that are active mitigation strategies. In this case, while active seis-
mic isolation cancels seismic noise before it reaches the suspension stages of a test
mass, NN have to be cancelled in the data of the GW detector. Coherent noise
cancellation, also known as active noise cancellation, is based on the idea that the
information required to model noise in data can be obtained from auxiliary sensors
that monitor the sources of the noise. The noise model can then be subtracted
from the data in real time or during post processing with the goal to minimize the
noise. A well known technique is based on Wiener filters, as described in more
details in [3]. In general for active noise mitigation techniques an array of sensors,
i.e. seismometers, is needed.
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Figure 1.7: Sensitivity curve of Virgo in its advanced configuration and expected
noise contributions. Figure taken from [14].

1.7 Advanced Virgo Interferometer: A second Gen-
eration Detector

Advanced Virgo (AdV) is the project to upgrade the Virgo detector to a second
generation instrument. AdV is designed to achieve a sensitivity of about one order
of magnitude better than that of Virgo (see Figure 1.7). This corresponds to an
increase in the detection rate of three orders of magnitude [1]. Major subsystems
upgrades to reach AdV configuration are forseen. A detailed description can be
found in [1, 14]. Some of the upgrades foreseen are now described, based on [1]

• Interferometer optical configuration. AdV will be a dual-recycled ifo.
Besides the standard power recycling, a signal-recycling (SR) cavity will also
be present, as can be seen in Figure 1.8. The tuning of the signal-recycling
parameter allows for the changing of the shape of the sensitivity curve and
the optimizing of the detector for different astrophysical sources. To reduce
the impact of the thermal noise of the mirror coatings in the mid-frequency
range, the beam spot size on the test masses has been enlarged.

• Increased laser power. Improving the sensitivity at high frequency re-
quires high laser power. The AdV reference sensitivity is computed assuming
125 W entering the interferometer, after the Input Mode Cleaner (IMC).

• Thermal compensation system. A sophisticated thermal compensation
system has been designed to cope with thermally-induced aberrations and
with losses induced by intrinsic defects of the optics. The sensing is based on
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Figure 1.8: Schematic of the optical layout of the Advanced Virgo ifo. Each 3
km-long arm-cavity is formed by an Input Mirror (IM) and an End Mirror (EM).
The recycling cavities at the center of the interferometer are 12 meters long and
are formed by the Power Recycling Mirror (PRM), the Signal Recycling Mirror
(SRM) and the two IM. Figure taken from [1].

Hartmann sensors and phase cameras, while the ring heaters around several
suspended optics will be used as actuators to change the radius of curvature.
CO2 laser projectors, which shine on dedicated compensation plates, allow
the compensation of thermal lensing and optical defects.

• Mirrors To cope with the increased impact of radiation pressure fluctua-
tions the AdV test masses will be twice as heavy (42 kg) as those of Virgo.
Fused silica grades with ultra low absorption and high homogeneity have
been chosen for the most critical optics. State of the art polishing technology
is used to reach a flatness better than 0.5 nm rms in the central area of the
test masses. Low-loss and low-absorption coatings are used to limit as far
as possible the level of thermal noise and the optical losses in the cavities,
which eventually determine the sensitivity in the high frequency range.

• Stray light control Scattered light could be a significant limitation on
detector sensitivity. In order to limit phase noise caused by part of the light
being back-scattered into the interferometer, new diaphragm baffles will be
installed. These will be either suspended around the mirrors, or ground-
connected inside the vacuum links.

• Payloads and vibration isolation A new design of the payloads has been
developed. This was triggered mainly by the need to suspend heavier mirrors,
baffles and compensation plates, while controllability and mechanical losses
have also been improved.

• General detector infrastructure Important modifications have been un-
dertaken in the main experimental hall turning them into acoustically-isolated
clean rooms. The vacuum has been upgraded by installing large cryotraps at
the ends of the 3 km pipes, in order to lower the residual pressure by a factor
of about 100.
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Chapter 2

Methodology: Adaptive and Fractal
Algorithms

In this Chapter, the methodology developed in the framework of this Thesis, and
adopted for data analysis is firstly outlined in section 2.1. The concepts on which
it relies, i.e. adaptive and fractal algorithms, are then described in more detail
in subsequent sections. Hilbert Spectral Analysis (HSA) and the concepts of in-
stantaneous frequency (IF), amplitude (IA) and Bandwidth (IB) are described in
section 2.2. The Empirical Mode Decomposition algorithm is described in section
2.3. Applying EMD, a given time series is decomposed in Intrinsic Mode Func-
tions (IMFs). If then HSA is applied to the obtained IMFs, EMD and HSA are
referred to as Hilbert Huang Spectral Analysis (HHSA). It provides the Hilbert
Huang Transform (HHT) i.e. a time-frequency-amplitude representation of the
analysed data, which has a higher resolution compared to Fourier based method-
ologies. In section 2.4, the Hilbert-Huang Transform is described. The issue of
mode mixing and Ensemble methodologies like Ensemble EMD (EEMD) used to
mitigate it are then described in section 2.5 while a test for significance of IMFs
against white noise is described in section 2.6. The recently developed adaptive
algorithm time-varying filter EMD (tvf-EMD), on which the adopted methodology
is based, is finally described in section 2.7. Finally, in section 2.8 is described the
fractal algorithm Detrended Fluctuation Analysis (DFA) and also how to compute
the Hurst exponent locally. In section 2.9 the tool developed in the framework of
this Thesis is described in more detail.

2.1 Outline of adopted Methodology
In this Section the methodology of time series analysis tested and developed in
the framework of this Thesis is briefly described. It relies on concepts, like HSA,
EMD, HHSA and tvf-EMD which are all described in more details in the following
sections. It aims at describing time series of data x(n) in term of three main
components, namely trend, signal and noise

x(n) = T (n) + s(n) + r(n) (2.1)

where T (n), s(n) and r(n) stands for trend, signal and residual components, re-
spectively, and n = 1...N is the number of data samples. To deal with data that

23



are possibly affected by nonlinearities and/or nonstationarities, an adaptive ap-
proach based on EMD is employed. To extract and characterise the three terms of
Equation (2.1), the following techniques are employed

• Empirical Mode Decomposition (EMD) is used for adaptive detrending.
Last term of EMD is a slowly varying function T (n), which can be either the
adaptive trend or the baseline wandering of the data, if present[17][18].

• Time varying filter EMD (tvf-EMD), a recently developed algorithm, is
employed in order to extract narrow band oscillatory modes embedded in the
data[6]. For sake of clarity, such modes are hereafter referred to as Intrinsic
Mode Functions (IMFs), as the ones extracted by standard EMD. Due to the
completeness property of the EMD and the tvf-EMD algorithms, summing
up all the extracted IMFs exactly recovers the original data.

• Denoising is performed making use of a thresholding approach estimating
persistency of the extracted IMFs, persistency which is quantified by means
of their Hurst exponent H, with 0 < H < 1.5 1. The Hurst exponent of each
IMF is evaluated with DFA and it is used to separate ”signal-like” IMFs,
having H > Hthresh and that are persistent, from ”noisy-like” IMFs, having
H < Hthresh and that exhibit anti persistent behavior. Summed together,
IMFs above threshold give the extracted signal s(n) while residuals r(n), or
noise, are obtained summing up IMFs under threshold. After that, the three
terms of Equation 2.1 can be independently characterised, either in term of
amplitude and frequency modulations (AM-FM) of the modes constituting
s(n), or in term of outlier occurrence in the case of r(n).

• Having separated the signal term s(n) from the noise term r(n), denoising
performances can be evaluated. This has been done following the approach
of [19], making use of the following parameters
- Mean squared error (MSE)
- Mean absolute error (MAE)
- Signal to noise ratio (SNR)
- Peak signal to noise ratio (PSNR)
- Crosscorrelation (xcorr)
between the extracted signal s(n) and the input data x(n). Low values of
MSE, MAE and high values of SNR, PSNR and xcorr indicate good denoising
performances, respectively.

In the remaining of this Chapter, the main features of the adopted methodology
are introduced and described. First, the HSA and the concepts of IF, IA and
IB are introduced. The equations of HSA bear physical information and can be
meaningfully applied to monocomponent or at least narrowband oscillatory modes.

1The Hurst exponent is a useful fractal index quantifying time series long term correlation
behaviour. Uncorrelated white noise has H = 0.5 while persistency (antipersistency) is present
if H > 0.5 (H < 0.5), respectively. Pink noise has H = 1 while for H > 1 the data are
nonstationary. H = 1.5 corresponds to Brownian Noise. A value of H < 1 corresponds to noise
like time series while H > 1 to random walk like time series.
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Hence, when multicomponent signals are to be analysed, they need to be decom-
posed into their components, or oscillatory modes, before performing HSA. To this
end, different algorithms are employed. One of such algorithms is EMD, which is
described in section 2.3. Since standard EMD applied to noisy datasets is affected
by mode mixing, i.e. the presence of widely different oscillations in the same mode
or the presence of two modes with oscillations of the same scale, noise assisted
methodologies like Ensemble EMD (EEMD) and Complete-EEMD with adaptive
noise (CEEMDAN) have been introduced to mitigate such problem [20][21], and
are hence briefly described in section 2.5. Noise assisted methodologies succeed at
extracting meaningful IMFs from noisy data, adding different realisations of white
noise and then averaging the results of the ensemble of decompositions, hence they
improve standard EMD performances. The output of the analysis though, depends
on the standard deviation of the added white noise and on the number of trials.
The tvf-EMD, is a recently developed algorithm [6], which improves EMD perfor-
mances against mode mixing and intermittency and it employs B-splines as a time
varying filter. It extracts narrow band modes of oscillation characterising the data.
It is the algorithm adopted in this Thesis to extract narrowband oscillatory modes
and it is extensively described in section 2.7, based on [6] and references therein.
Since the adopted methodology is based on empirical algorithms, and performances
need to be evaluated a posteriori, in Chapter 3 the algorithm is applied to datasets
from different physical systems to test its ability to extract meaningful physical
information.

2.2 Hilbert Spectral Analysis: The instantaneous
frequency, amplitude and bandwidth

In this Section, the concepts of IF, IA and IB, are introduced based on [22][23][24]
and references therein. The IF is a useful parameter when describing signals which
spectral characteristics, e.g. the frequency of spectral peaks, are time varying.
Such signals are referred to as nonstationary2, a notable example being the chirp
signal, a sinusoidal wave which frequency sweeps in time.
The IF is a time varying parameter which defines the location of the signal spectral
peak as it varies with time. It can be interpreted as the frequency of a sine wave
which locally fits the data [22]. Its definition is application related, and the IF has
then to be estimated empirically. It bears physical meaning only if estimated for
a signal which is monocomponent or at least narrow band. If instead the analysed
signal is multicomponent, it first needs to be decomposed into its components and
this is usually achieved using EMD and related algorithms.
The IF can be defined based on the concept of analytic signal, firstly introduced

2The term stationarity is also applied to the distribution of random variables. If the distri-
bution is not dependent on time, the time series is said to be strictly stationary. Furthermore, a
stationary process has the property that mean, variance and autocorrelation do not change with
time. In the remaining of this Thesis, the term nonstationary is referred to varying frequency of
oscillatory modes. Variation in the mean is instead taken into account in the trend term T (n).
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by Gabor [23]. Given a signal x(t), the analytic signal z(t) is defined by

z(t) = x(t) + iH[x(t)] = x(t) + iy(t) = a(t)eiφ(t) (2.2)

where the Hilbert Transform (HT) of x(t) is defined by

H[x(t)] = y(t) =
1

π
PV

∫ ∞
−∞

x(τ)

t− τ dτ, (2.3)

and is the convolution product of x(t) and 1/πt. The analytic signal z(t) can
be considered the best local fit of an amplitude and phase varying trigonometric
function to x(t) [17]. An intuitive definition of IF can be given making use of the
following general expression for a frequency modulated (FM) signal [22]

x(t) = a cos(φ(t)) = a cos
[∫ t

0

2πfi(t)dt+ θ
]
. (2.4)

The instantaneous frequency is hence defined by

fi(t) =
1

2π

dφ(t)

dt
. (2.5)

A more general definition of IF for an AM-FM signal of the form x(t) = a(t)cosφ(t),
is given in term of the phase of the analytic signal

fi(t) =
1

2π

d

dt
[arg(z(t))], (2.6)

where z(t) is the analytic signal as defined in Equation 2.2. Signals x(t) andH[x(t)]
are said to be in quadrature, because theoretically they’re out of phase by π/2. For
real signals though, this is only true if the conditions of the Bedrosian’s product
theorem (BPT) hold [22], i.e. the spectra of a(t) and of cosφ(t) are disjoint. In
this case it follows that

H[a(t)cosφ(t)] = a(t)H[cosφ(t)] = a(t) sinφ(t), (2.7)

and Equation2.2 is verified. The BPT is reported in Appendix D.
The notion of analytic signal was firstly introduced by Gabor in order to define
the central moments of the frequency [22][23]

< fn >=

∫∞
−∞ f

n|Z(f)|2df∫∞
−∞ |Z(f)|2df , (2.8)

where Z(f) is the spectrum of the analytic signal z(t). If instead the spectrum of
the real signal x(t) is used, all the odd moment would be zero, since |X(f)|2 is an
even function of frequency[22].
Making use of Gabor’s results, it can be shown that the average frequency in a
signal’s spectrum equals the time average of the IF [24]

< f >=< fi > (2.9)

26



where

< f >=

∫∞
−∞ f |Z(f)|2df∫∞
−∞ |Z(f)|2df , (2.10)

< fi >=

∫∞
−∞ fi(t)|z(t)|2dt∫∞
−∞ |z(t)|2dt . (2.11)

Based on this relations, Ville formulated the Wigner-Ville distribution, which first
moment respect to frequency equals the IF [22][24].

2.2.1 Interpretation of instantaneous frequency and band-
width

Following [22], an insight on the meaning of IF can be given considering a signal
x(t) in the frequency domain. The spectrum of the analytic signal of Equation 2.2
is given by

Z(f) =

∫ ∞
−∞

z(t)e−i2πftdt =

∫ ∞
−∞

a(t)ei[φ(t)−2πft]dt. (2.12)

Applying the stationary phase principle, it follows that the integral have its largest
value at fi such that

d

dt
[φ(t)− 2πfit] = 0, (2.13)

which then gives

fi(t) =
1

2π

d

dt
[φ(t)] (2.14)

Hence, if the instantaneous frequency fi(t) is time dependent, it provides a mea-
sure of how the energy concentration of a signal varies in the frequency domain,
as a function of time [22]. The instantaneous bandwidth (IB) is then defined
as the standard deviation, or spread, of frequencies at that time.
In general the HT and the analytic signal can have meaningful physical interpreta-
tion if the spectra of a(t) and of φ(t) are separated in frequency, e.g. are spectrally
disjoint, as also stated by the BPT. The more a signal is narrowband, the bet-
ter will be the estimate of its IF, and also the closer iH[x(t)] will approach the
quadrature signal of x(t). For this reason, before performing HSA on a multicom-
ponent signal, its components need to be separated. This is the ultimate goal of
the Empirical Mode Decomposition and related algorithms. EMD, noise assisted
methodologies like EEMD and CEEMDAN, and the tvf-EMD algorithm are hence
described in the next sections.

2.3 Empirical Mode Decomposition
EMD is an adaptive algorithm which aims at decomposing nonlinear and/or non-
stationary data into Intrinsic Mode Functions (IMF), which are nearly monocom-
ponent oscillatory modes of the data. The EMD algorithm, firstly introduced by
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Huang [17][18], relies on the fundamental assumption that any time series of data
consists of a superposition of different intrinsic modes of oscillation. The main
assumption of EMD, as stated by Huang in [18], is the following: ”Any data con-
sists of different simple intrinsic modes of oscillation. Each intrinsic mode, linear
or nonlinear, represents a simple oscillation which will have the same number of
extrema and zero-crossings. The oscillation will also be symmetric with respect to
the local mean. At any given time, the data may have many different coexisting
modes of oscillation, one superimposing on the others. Each of these oscillatory
modes is represented by an intrinsic mode function (IMF)”. The extraction of phys-
ically meaningful IMFs is the ultimate goal of the EMD algorithm. According to
Huang, any oscillatory function must satisfy the two following requirements to
be considered an IMF [18]

• In the whole dataset, the number of extrema and the number of zero-crossings
must either equal or differ at most by one.

• At any point, the mean value of the envelope defined by the local maxima
and the envelope defined by the local minima is zero.

Considering a time series x(t), where t = 1 . . . N , with N being the data length,
the main steps of the EMD algorithm are [17, 18]

• 1) Identify all the local maxima/minima and connect them by a cubic spline
to form an upper/lower envelope, covering all the data between them.

• 2) The envelope mean, designated as m1,j(t) is subtracted from the data.
This difference is the first component and is referred to as proto IMF

h1,j(t) = x(t)−m1,j(t). (2.15)

• 3) If both requirements described earlier are satisfied

h1,j = c1(t) (2.16)

is considered to be the first IMF and it is then subtracted from the data.
The algorithm is then repeated on the data minus the first IMF

x1(t) = x(t)− c1(t). (2.17)

• 4) If instead h1,j(t) doesn’t respect the aforementioned conditions, steps 1)
and 2) of the EMD algorithm are repeated j = 1...S times on h1,j(t) until an
IMF is obtained according to the requirements. This procedure is referred to
as sifting.

The sifting procedure aims at making the wave profiles symmetric eliminating rid-
ing waves, so that the HT can give meaningful estimates of the IF when applied
to mono-component or narrow band signals [17].
Stopping criteria are typically employed in standard EMD and related method-
ologies. They either limit the number of sifting iterations to S (typical values are
S ≤ 10) or introduce a threshold on the required symmetry of the upper/lower
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envelopes. Stopping criteria are necessary both to help the algorithm to converge
but also because oversifting could possibly remove physically meaningful amplitude
modulations. One example of stopping criteria is the Cauchy convergence test, in
which the sifting is stopped when the normalised squared difference between two
successive sifting iterations

SDj =

∑T
t=0 |hj−1(t)− hj(t)|2∑T

t=0 h
2
j−1(t)

(2.18)

is lower than a given threshold. Other criterion allows instead to define different
thresholds on the IMF mean that must be respected respectively on local and global
intervals of the data. Stopping criteria contribute to relax the otherwise very strict
restrictions of the aforementioned two conditions for having an IMF [17].
The EMD algorithm extracts IMFs until the residual term is smaller than a selected
value or when it becomes a monotonic function, and can then be considered as the
adaptive trend or baseline wandering of the data, if present. Such trend component
is hereafter referred to as T (n), where n = 1...N are the data samples of a time
series of length N . Hence, after applying EMD, the data are decomposed into
j = 1 . . . K different IMFs, cj(n), plus a term T (n), which is the adaptive trend

x(n) =
K∑
j=1

cj(n) + T (n). (2.19)

From equation (2.19), it can be seen that the EMD algorithm is complete, e.g.
summing up the extracted oscillatory modes plus the trend exactly recovers the
original data. It is found empirically that the number of extracted IMFs depends
logarithmically on the length of the data K ' log2N . The step of removing the
mean is not needed when using EMD, because it is adaptively extracted by the
EMD algorithm itself. Figure 2.1 shows the initial steps of the EMD algorithm and
how the envelope mean is obtained and then subtracted providing a proto IMF.

2.4 Hilbert-Huang Transform: a time-frequency-
energy representation of nonlinear nonstation-
ary data

The EMD algorithm allows to obtain a collection of IMFs, cj(n), with n = 1 . . . N
and j = 1 . . . K number of samples and of extracted modes, respectively. The
expansion of the data x(n) obtained performing EMD is defined in term of an
adaptive base, i.e. the IMFs, which is obtained from the data a posteriori. Follow-
ing the notation of [17], the data can be expressed as

x(t) = Re

{
K∑
j=1

aj(t)e
∫
ωj(t)dt

}
, (2.20)

where both frequency and amplitude of the basis functions, i.e. the IMFs, are time
varying. The instantaneous frequency of the jth IMF is given by fj(t) = ωj(t)/2π,
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Figure 2.1: Shown is the EMD procedure to obtain oscillatory modes of the data.
Left: In green the upper and lower envelope of the data, which are shown in blue.
Envelopes mean m1 is shown in red. Right: In blue is shown the first oscillatory
mode h1, or proto IMF, obtained subtracting the mean m1 from the data, depicted
in pink. After the first applicaiton of the algorithm, h1 is not yet an IMF. EMD is
repeated until the requirements to be an IMF are met, also referred to as sifting.
Figure taken from [17][18]

where ω(t) is the time derivative of the adaptively determined phase function. It
is expressed in Hertz. Differently from frequency, the IF is no longer a mean value
over the whole time domain obtained by a given transform. It is instead charac-
terised by instantaneous values at different times [25].
Applying HSA to the K different modes cj(n) extracted by EMD provides the
Hilbert-Huang Transform (HHT), or Hilbert spectrum, H(ω, t), which is a time-
frequency-amplitude representation of the data. The expansion of Equation 2.20
can be considered a generalisation of the classical Fourier expansion, which would’ve
been

x(t) = Re

{
K∑
j=1

aje
ωjt

}
, (2.21)

where both aj and ωj are constants. Restrictions on amplitude and frequency of
the Fourier components are no longer retained due to the adaptive nature of the
algorithm, which allows it to expand nonlinear non stationary datasets in term
of amplitude and frequency modulations of its components, which are empirically
extracted.

2.4.1 Marginal Hilbert Spectra, Instantaneous Energy and
Degree of Stationarity

The Hilbert spectrum H(ω, t), can be integrated in time to obtain the so called
marginal Hilbert spectrum

h(ω) =

∫ T

0

H(ω, t)dt. (2.22)

It gives the total amplitude contribution at each frequency, as accumulated during
the entire data length.
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Figure 2.2: a) Data to be decomposed by EMD. b) Extrema identification step.
c) Subtraction of envelope mean. d) IMF affected by mode mixing. It can be
seen that oscillations of widely different scales are present in the same IMF. Figure
taken from [17]

Integrating the Hilbert spectrum over the frequency domain instead, provides the
instantaneous Energy [26]

IE(t) =

∫
ω

H(ω, t)dω. (2.23)

giving informations on time variations of the energy. Finally, the degree of station-
arity DS(ω) is defined as

DS(ω) =
1

T

∫ T

0

(
1− H(ω, t)

n(ω)

)
dt, (2.24)

where n(ω) = h(ω)/T is the mean marginal spectrum. The Hilbert spectrum of
a stationary process doesn’t depend on time, it contains only horizontal lines and
DS(ω) is in this case zero and the marginal Hilbert spectrum corresponds to the
Fourier spectrum [26].
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2.5 Mode mixing and noise assisted methods
Performances of EMD are diminished when applied to noisy data, due to the
fact that the algorithm is sensitive to fluctuations in both extrema locations and
magnitude. Intermittent changes due to noise can give rise to mode mixing,
which is defined either as a single IMF consisting of waves of widely disparate
scales or as a signal of similar scales residing in different IMFs [18]. An example of
mode mixing due to intermittent noise can be seen in Figure 2.2. To overcome this
problem, noise assisted methodologies were developed, ensemble empirical mode
decomposition (EEMD) being one of them. When applying EEMD to data x(n),
an ensemble xi(n) is obtained adding different realisations of finite amplitude white
noises wi(n) to the target data

x(n)i = x(n) + wi(n), (2.25)

with i = 1...M number of trials. EMD is then applied to each one of such reali-
sations xi(n), and a collection of IMFs are obtained. The ensemble means of the
corresponding IMFs are considered to be the true oscillatory modes of the data.
In the output of EEMD the contribution from the added uncorrelated white noises
is averaged out after a large number of trials M . A possible drawback of this
approach is that, for each trial i = 1...M , the obtained total number of IMFs, Ki,
can vary slightly. This can lead to noisy outputs, since IMFs of different scales
are being averaged. Furthermore, the number of trials and the standard deviation
of noise, which has to be of finite amplitude, needs to be defined a priori. Beside
these drawbacks though, EEMD usually helps mitigate mode mixing and can pro-
vide a meaningful decomposition of noisy datasets, hence being an improvement
of standard EMD.
Another example of noise assisted methodology is the Complete EEMD with adap-
tive noise (CEEMDAN)[27, 28], in which realisations of white noise are added at
each step of the sifting process. The obtained average IMF is then subtracted at
each step, before continuing with the decomposition.

2.6 Statistical significance test of IMFs
The statistical characteristics of Gaussian white noise have been studied intensively
using the EMD algorithm [17]. It is found that IMFs of white noise follows normal
distributions, and hence their energy follows a χ2 distribution. This result have
been used to test statistical significance of the extracted IMFs against white noise.
This approach can be used to determine whether or not an IMFs contained in the
analysed data is possibly due to white noise. For sake of clarity and only in this
section the notation of [17] is adopted, and j = 1 . . . N refers to the number of data
samples while n identifies the different IMFs. The mean energy density of the nth
IMF is defined by

Ēn =
1

N

N∑
j=1

[cn(j)]2. (2.26)
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Figure 2.3: Relationship between the mean energy density of IMFs obtained de-
composing white noise and their corresponding mean period (black dots). Also
shown are the spread lines of energy density. Figure from [17, 18].

Due to the two requirements introduced earlier, IMF mean period T̄n, can be
estimated either with the extrema counting method or making use of the IMF
Fourier spectrum, referred to as spectrum weighted method. Empirically it is
found that, for white noise [17]

ln Ēn + ln T̄n = 0. (2.27)

Once combined, equations (2.26)(2.27) allows to obtain the spread lines of the
energy density of white noise IMFs

y = −x± k
√

2/Nex/2, (2.28)

where k is related to the percentiles of a standard normal distribution and y = lnĒn
and x = lnT̄n. The spread lines for confidence against white noise of Equation 2.28
are shown in Figure 2.3, obtained using the Monte-Carlo method analysing a large
dataset of synthetically generated long Gaussian white noises [17].
Following this approach, in order for an IMF to be considered a signal against white
noise, with a given confidence level, it has to lie outside the thresholds defined by
the spread lines for white noise.
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2.7 Time varying filter EMD (tvf-EMD)
In this section the time varying filter EMD (tvf-EMD) algorithm, used for the data
analysis carried out in this Thesis work, is described based on [6] and references
therein.
The outuput of tvf-EMD is a collection of narrow band oscillatory modes, which
for clarity are hereafter referred to as IMFs, even if the aforementioned require-
ments are not strictly met (i.e. equal numbers of extrema and zero crossings, zero
envelope mean). The tvf-EMD algorithm makes use of B-splines as a filter with
time varying frequency cut off to be able to deal with nonstationary data.
Furthermore, due to a frequency realignment step, the algorithm is able to deal
with both mode mixing and intermittency. It has a higher frequency resolution
compared to standard EMD and it is able to separate oscillatory modes with fre-
quency ratio up to 0.9 [6].
During the sifting process of tvf-EMD, the analysed data x(t), where t = 1 . . . N ,
are separated into a local high frequency (LHF) and a local low frequency (LLF)
component. The iterative application of the algorithm ensures that the obtained
LHF signal to be extracted is local narrow band. To that purpose a threshold
criteria based on the instantaneous bandwidth is employed to stop the sifting pro-
cedure, once it is achieved that the extracted IMF is local narrow band. In the
tvf-EMD algorithm the envelope mean need not to be zero, and the correspondent
requirement is relaxed.
In the remaining of this section, the following features of the tvf-EMD algorithm
are summarised, based on [6] and references therein

• B-splines approximation of a signal in Section 2.7.1

• Estimation of local frequency cutoff in Section 2.7.2

• Frequency realignment step in Section 2.7.3

• Sifting procedure of the tvf-EMD method in Section 2.7.4

2.7.1 B-splines approximation of a signal

B-splines are piecewise polynomials which, once joined together, approximate the
desired signal. The joining points of the polynomial segments are referred to as
knots. The process of B-spline approximation with equally spaced knots is called
uniform B-spline approximation and it consist of constructing polynomial splines
that approximate the input signal. Mathematical definition and some properties
of spline functions are given in Appendix E, based on [29] [30] [31]. Considering a
B-spline function βn(t) of order n having step size of the knot sequence m, a signal
in this B-spline space is defined by [6][29].

gmn (t) =
∞∑

k=−∞

c(k)βn(t/m− k), (2.29)

where the c(k) are the B-splines coefficients. The signal, or approximation result, is
determined by the order of the spline n, its knot distribution m and the coefficients
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Figure 2.4: Frequency responses of B-spline approximation for various values of
m and n. Top: m = 2, n = 2, 5, 8, 11. Bottom: m = 2, 4, 8, 16, 32, n=14. Figure
taken from [6].

c(k). Given n and m, B-spline approximation aims at obtaining the coefficients
c(k) which minimize an approximation error.
As described in [6], B-spline approximation is a form of low pass filtering. Figure 2.4
shows the frequency response of B-spline based filters of different orders and knot
spacing, respectively. In Figure 2.4, top panel, it is shown the frequency response
for m = 2 and different spline orders n = 2, 5, 8, 11. The filter approaches an ideal
low pass filter when the spline order n increases. Figure2.4, bottom panel, shows
instead the frequency response for various knot spacing values m = 2, 4, 8, 16, 32,
and spline order n = 14. The cut-off frequency of B-spline based filters is 1/2m,
function of the knot spacing m [6].

2.7.2 Estimation of local frequency cutoff

In [6], an expression for the local cut-off frequency φbis is derived analytically
making use of the notions of instantaneous amplitude IA and frequency IF, which
have been introduced in previous sections. The starting point to obtain the local
frequency cut-off is the general expression for a multicomponent signal, comprised
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of N narrow-band components

x(t) =
N∑
m=1

am(t) cos(φm(t)), (2.30)

where am(t) is positive and φm(t) is non-decreasing, and both am(t) and φm(t) are
slowly varying [17]. Following [32], a signal

z(t) = A(t)ejφ(t) (2.31)

can be defined as narrow-band if A(t) is band limited signal and its highest
frequency is far less than φ′(t). For a band-limited multicomponent signal x(t), its
instantaneous amplitude A(t) and frequency φ′(t) can be obtained [32]

A2(t) =
N∑
m=1

N∑
n=1

am(t)an(t) cos[φm(t)− φn(t)] (2.32)

φ′(t) =
1

A2(t)

N∑
m=1

(
φ′m(t)

N∑
n=1

am(t)an(t) cos[φm(t)−φn(t)]
)
+

N∑
m=1

N∑
n=1

a′m(t)an(t)

A2(t)
sin[φm(t)−φn(t)]

(2.33)
Since x(t) is a multi-component signal, the previous relations may not be mean-
ingfully used to obtain its instantaneous amplitude and frequency. In the tvf-EMD
algorithm, the previous relations are used for cut-off frequency estimation. The
main steps for obtaining such quantity are hereafter summarised based on [6]. A
multicomponent signal can be expressed as a combination of two signals as

z(t) = A(t)eiφ(t) = a1(t)e
iφ1(t) + a2(t)e

iφ2(t) (2.34)

If the signal is local narrow-band, both a1(t) and a2(t) vary slowly, and so do φ′1(t)
and φ′2(t). For a two component signal (N = 2) the previous relations are [6][32]

A2(t) = a21(t) + a22(t) + 2a1(t)a2(t) cos[φ1(t)− φ2(t)] (2.35)

and

φ′(t) =
1

A2(t)

(
φ′1(t)(a

2
1(t)+a1(t)a2(t) cos[φ1(t)−φ2(t)])+φ

′
2(t)(a

2
2(t)+a1(t)a2(t) cos[φ1(t)−φ2(t)])

)
+

1

A2(t)

(
a′1(t)a2(t) sin[φ1(t)− φ2(t)]− a′2(t)a1(t) sin[φ1(t)− φ2(t)]

)
Supposing that both a1(t) and a2(t) vary much slower than cos[φ1(t)− φ2(t)]),

according to the previous relation the local extrema of A(t) is approximately de-
termined by the local extrema of cos[φ1(t)−φ2(t)]. If a local minimum or maxima
of A(t) is obtained at tmin or at tmax, respectively, and defining

β1(t) = |a1(t)− a2(t)| (2.36)
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β2(t) = a1(t) + a2(t) (2.37)

From the previous relations it follows that

β1(tmin) = A(tmin) = |a1(tmin)− a2(tmin)| (2.38)

β2(tmax) = A(tmax) = a1(tmax) + a2(tmax) (2.39)

Since a1(t) and a2(t) are both slow varying, β1(t) and β2(t) can be estimated by
finding the curve going through all the minima and maxima of A(t), respectively.
After that, assuming a1(t) ≥ a2(t), the two functions a1(t) and a2(t) are simply
obtained by

a1(t) = [β1(t) + β2(t)]/2 (2.40)

a2(t) = [β2(t)− β1(t)]/2 (2.41)

To obtain the bisecting frequency, also φ1(t) and φ2(t) needs to be estimated.
This is achieved defining

η1(t) = φ′1(t)[a
2
1(t)− a1(t)a2(t)] + φ′2(t)[a

2
2(t)− a1(t)a2(t)] (2.42)

and

η2(t) = φ′1(t)[a
2
1(t) + a1(t)a2(t)] + φ′2(t)[a

2
2(t) + a1(t)a2(t)], (2.43)

it holds that
η1(tmin) = φ′(tmin)A2(tmin) (2.44)

η2(tmax) = φ′(tmax)A
2(tmax) (2.45)

Because a1(t), a2(t), φ′1(t) and φ′2(t) are slow varying components, η1(t) can be
estimated through interpolation of a set of point given by φ(tmin)′A2(tmin), while
similarly η2(t) can be estimated by interpolation of the set of points given by
φ(tmax)

′A2(tmax).
Then φ′1(t) and φ′2(t) are obtained by solving the previous relations, and have the
following expression

φ′1(t) =
η1(t)

2a21(t)− 2a1(t)a2(t)
+

η2(t)

2a21(t) + 2a1(t)a2(t)
(2.46)

φ′2(t) =
η1(t)

2a22(t)− 2a1(t)a2(t)
+

η2(t)

2a22(t) + 2a1(t)a2(t)
(2.47)

The local cutoff frequency is then simply obtained by

φ′bis =
φ′1(t) + φ′2(t)

2
=
η2(t)− η1(t)
4a1(t)a2(t)

(2.48)
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Figure 2.5: Examples of mode mixing in a two-component model. The dotted
lines correspond to the LLF component, the dashed lines correspond to the LHF
component and the solid lines correspond to the local cut-off frequency. In (a)
and (b) the two components can be successfully separated while in (c) and (d)
mode mixing occurs because the LLF component is segmented by the local cut-off
frequency.

The bisecting frequency doesn’t change in case a1(t) ≤ a2(t). Following the notation
of [6], given the bisecting frequency φ′bis(t), a signal h(t) can be retrieved by

h(t) = cos
[∫

φ′bis(t)dt
]

(2.49)

In the tvf-EMD algorithm, the B-spline approximation is employed as a time vary-
ing filter, having a time varying frequency cutoff, where the extrema timings of
h(t) are taken as knots. The approximate result is denoted as m(t)

2.7.3 The intermittency problem: frequency realignment to
mitigate mode mixing

The estimate of the cutoff frequency is affected by the possible occurrence of in-
termittence or noise. When this occur, it’s value changes abruptly and it needs to
be realigned. In the tvf-EMD algorithm this is achieved first determining where
intermittency occurs and the cut-off frequency changes abruptly, then setting a
threshold on its changing rate within a certain time span, chosen as the time inter-
val between two adjacent maxima. The frequency realignment step of the tvf-EMD
algorithm is now briefly described based on [6], Algorithm 2.
First of all, in the time span where intermittency occurs the floor and peak of the
frequency cutoff need to be determined: If φ′bis(t) is increasing within the time
span, it is on its rising edge, then φ′bis(t) to the left of the intermittence is consid-
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ered to be a floor. Conversely, if φ′bis(t) is decreasing within the time span, it is on
its falling edge, then φ′bis(t) to the right of the intermittence is considered to be a
floor. This can be seen in Figure 2.5. The identification of a floor is achieved by
examining the neighboring intermittences. The frequency changing rate between
two adjacent maxima is limited by a thresholding factor ρ. More details can be
found in [6], Algorithm2.

2.7.4 Sifting of tvf-EMD: Stopping criterion based on in-
stantaneous bandwidth and local narrow-band signal
extraction

In the following, both the stopping criterion of the tvf-EMD algorithm and the sift-
ing procedure to extract local narrow-band oscillatory modes are described based
on [6]. The stopping criterion is based on the concept of instantaneous bandwidth,
introduced in a previous section.
The instantaneous bandwidth was firstly defined by Cohen for an analytic signal
of the kind z(t) = A(t)eiφ(t) as [33, 34]

IBCohen = |A(t)′/A(t)| (2.50)

Based on IBCohen, a signal is narrow-band if its instantaneous amplitude varies very
slowly. In order to overcome the problem of the presence of oscillatory terms present
in IBCohen for a two tone signal of constant frequencies, an alternative expression
for instantaneous bandwidth was obtained in [35] as the standard deviation in the
weighted average instantaneous frequency (WAIF) [36] φavg at a given time, which
for a two component signal is defined as a weighted average of the instantaneous
frequencies of the individual components

φavg =
a21(t)φ

′
1(t) + a22φ

′
2(t)

a21 + a22
(2.51)

Then, Loughlin IB for a two component signal is defined as

IBLoughlin(t) =

√
a′21 (t) + a′22 (t)

a21(t) + a22(t)
+
a21(t)a

2
2(t)(φ

′
1(t)− φ′2(t))2

(a21(t) + a22(t))2
(2.52)

In the previous expression, if |φ′1(t)−φ′2(t)| increases, both the separation between
the two components and Loughlin instantaneous bandwidth increases. Also if
|a′1(t)| or |a′2(t)| increase, the amplitude modulation is more pronounced and the
instantaneous bandwidth again increases. Loughlin bandwidth quantifies how two
components are separated in frequency. A signal can hence be defined as local
narrow band based on the Loughlin’s definition of instantaneous bandwidth. Since
IBLoughlin(t) is an absolute value given in rad/s, to quantify how much it deviates
from the WAIF defined earlier, in [6] a relative criteria is introduced

θ(t) =
IBLoughlin(t)

φavg
(2.53)
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Given a threshold ξ, If an oscillatory function x(t) has θ(t) < ξ is referred to as
local narrow band, i.e. is already an IMF. Otherwise it is set x(t) = x(t) −m(t)
and the procedure described in previous sections is repeated.
In summary, in the tvf-EMD algorithm the definition of Intrinsic Mode function
is replaced by the one of local narrow band signal. For sake of clarity, in the
remaining of this Thesis the terms IMFs and local narrow band signal are both
referred to the output of the tvf-EMD algorithm.
To summarise, the sifting process of the tvf-EMD algorithm is carried out in three
steps [6]

• Estimate the bisecting frequency (local cut-off frequency) φbis(t).

• Filter the input signal using tvf to obtain the local mean m(t).

• Check if the residual signal satisfies the stopping criterion

The complete description of the sifting method of the tvf-EMD algorithm can be
found in [6], Algorithm 3, and is here reported for sake of clarity

• 1) Calculate the instantaneous amplitude A(t) and instantaneous frequency
φ′(t) of x(t) using Hilbert transform

• 2) Locate the local minima and maxima of A(t), denoted as {tmin} and {tmax}
respectively.

• 3) Interpolate the set of pointsA({tmin}) to obtain β1(t). In the same manner,
interpolate A({tmax}) to obtain β2(t). Compute a1(t) and a2(t).

• 4) Interpolate φ′(tmin)A2(tmin) and φ′(tmax)A2(tmax) to obtain η1(t) and η2(t).
Compute φ′1(t) and φ′2(t).

• 5) Calculate the local cut-off frequency φ′bis(t) = [φ′1(t) + φ′2(t)]/2.

• 6) Realign φ′bis(t) to deal with the intermittence problem (Algorithm 2 of [6]).

• 7) Compute h(t) according to 2.49. Then apply B-spline approximation filter
on x(t), by taking the extrema timings of h(t) as knots, i.e., {tmin} and
{tmax}. The approximate result is denoted as m(t).

• 8) Calculate the stopping criterion θ(t). If θ(t) ≤ ξ, x(t) is taken to be an
IMF, else x(t) = x(t)−m(t) and repeat steps 1-7.

In the tvf-EMD algorithm there are two parameters, i.e., the bandwidth threshold
ξ to be used in the stopping criterion, and the B-spline order n, which determines
the time varying filter frequency roll-off.
The bandwidth threshold parameter ξ is used to determine whether the input
signal should be filtered further. It also determines the separation performance.
Notably the parameter n is entirely unrelated to the cut-off frequency estimation.
It is assumed that A(t) have a succession of local minima and maxima. If A(t)
does not contain enough minima and maxima to continue interpolation, it is slowly
varying. The input signal is hence considered to be already local narrow-band and
is not further decomposed. A comprehensive description of the tvf-EMD algorithm
can be found in [6] and references therein.
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Figure 2.6: In DFA the integrated time series y(k) is divided in windows of length
n, it is detrended and then the average root mean square computed for windows
of different scales. Figure from [37].

2.8 Fractal Algorithms: Detrended Fluctuation Anal-
ysis and Local Hurst Exponent

The DFA method is here described based on [37]. It has applications in many
fields of time series analysis, e.g. geophysics physiology, and economics. It aims at
characterising the self similarity behaviour of a given time series. This is achieved
by computing fluctuations F (n) in the data as function of different timescales n.
Figure 2.6 shows the first step of the DFA algorithm, the integrated time series
is divided in windows of length n, linear detrending is performed subtracting the
trend yn(k) in each window and the root mean square is evaluated by means of the
following relation

F (n) =

√√√√ 1

N

N∑
k=1

[y(k)− yn(k)]2 (2.54)

If the investigated process is self similar, such fluctuations are found to scale in a
power law fashion with the length of the time window considered, the exponent
being the DFA coefficient H, or Hurst exponent

F (n) ∝ nH (2.55)

For uncorrelated white noise H = 0.5 while persistency (antipersistency) is present
in the data if H > 0.5 (H < 0.5), respectively. Pink noise has H = 1 while for
H > 1 the data are unbounded. H = 1.5 corresponds to Brownian Noise.
If the analysed time series can be described by one Hurst exponent, constant over
the whole time span, it is referred to as monofractal. If instead the time series is a
multifractal, is characterised by local fluctuations with both small and large mag-
nitudes [5]. A multifractal time series can be described by more than one Hurst ex-
ponent, which will be different at different time intervals. To highlight this feature,
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Figure 2.7: Flowchart illustrating the different steps of the tool for adaptive time
series analysis used in this Thesis work.

the Hurst exponent can be computed locally, sliding windows of small size, with a
procedure similar to DFA. This is described in [5], where a tutorial is also provided
in MATLAB. Some applications of the local Hurst exponent for the description of
persistency in radionuclide time series can be found in [38, 39, 40, 41, 42], while
characterisation of outliers occurrence in radionuclide time series in [43, 44].

2.9 Tool for Adaptive time series analysis based on
tvf-EMD algorithm

The tool developed for the data analysis of this Thesis work is hereafter described,
based on the concepts outlined in previous sections. Figure 2.7 shows a flowchart of
the adopted methodology. Once applied to a time series x(n), with n = 1 . . . N , it
characterise it according to equation (2.1). The steps of the adopted methodology
are the following

• Initially, data are checked for missing values. If missing values are present,
interpolation is carried out.

• Standard EMD is then performed and the last term so obtained is a slowly
varying function T (n), with n = 1...N number of data samples. It can either
be the adaptive trend or the baseline wandering affecting the data, if present.
It is subtracted from the data before further analysis.

• Then, tvf-EMD algorithm is performed on x(n) and a set of narrow-band
modes of oscillation, ci(n) embedded in the data is obtained.
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• The denoising step is then carried out. The set of modes ci(n) is firstly
classified based on persistent behaviour, calculating their Hurst exponent
Hci(n) by means of DFA method. The denoising step is carried out making use
of a thresholding approach [19]. For this reason a threshold Hurst exponent
Hthr is chosen. The thresholding based denoising is then carried out as follows

– If Hci(n) < Hthr, noise related IMF

– If Hci(n) > Hthr, signal related IMF

• After the denoising step, persistent IMFs are summed up and they consti-
tute the signal s(n), which can be characterised in term of amplitude and
frequency modulations of its main modes of oscillation, e.g. the persistent
IMFs, through the Hilbert Huang Transform H(ω, t).

• Summing up the remaining IMFs gives the residuals r(n), which instead can
be characterised in term of outliers occurrence.

• Following the approach of [19], the following parameters can be employed for
denoising performance evaluation

– Mean squared error: MSE =
∑N

n=1(x(n)−s(n))2
N

– Mean absolute error: MAE =
∑N

n=1 |(x(n)−s(n)|
N

– Signal to noise ratio: SNR = 10 log10

∑N
n=1 x(n)

2∑N
n=1(x(n)−s(n))2

– Peak signal to noise ratio: PSNR = 20 log10
max(x(n))
RMSE

– Crosscorrelation xcorr =
E((s(n)−µs(n))(x(n)−µx(n)))

σs(n)σx(n)
,

between x(n) and s(n), where x(n) is the input data, s(n) is the extracted
signal, RMSE is the square root of MSE and n = 1 . . . N is the number of
data samples. Low MSE, MAE and high SNR, PSNR, xcorr are indicative
of good denoising performances.

• The Marginal Hilbert spectra h(ω) can also be calculated, based on (2.22),
giving information regarding the total amplitude accumulated at each fre-
quency in the analysed time span.

• Furthermore, decomposing with tvf-EMD a white noise time series w(n) con-
fidence lines against white noise can be obtained as described in 2.5. Sig-
nificance of the obtained oscillatory modes can then be tested against white
noise having standard deviation of the same order of the input data.

• The Hurst exponent can be computed locally, to evaluate persistency in the
data, making use of the algorithm described in [5].

Even though in the tvf-EMD algorithm there’s no restriction on the number of
IMFs that can be extracted, in the framework of this Thesis, the number of IMFs
to be extracted have been set to K = log2N where N is the data length, since this
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is commonly the case when applying standard EMD algorithms. Since the adopted
methodology is empirical, results needs to be evaluated a posteriori, applying the
methodology to data from real physical systems. In the next Chapter, the method-
ology described in this Section is applied for the characterisation of seismometer
and radionuclide time series data.
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Chapter 3

Results

In this Chapter, results from the application of both adaptive and fractal algo-
rithms, described in Chapter 2, on data from different physical systems are pre-
sented. The analysed data are the following

• First, the algorithm described in 2.9 was tested on synthetic GW data cor-
rupted by purple noise and results are presented in section 3.1.

• In 3.2 the methodology described in Section 2.9 was used for adaptive denois-
ing of seismometer data monitoring Virgo NEB during four different acoustic
noise injections performed for detector characterisation purposes. Separa-
tion of the seismic noise, induced by the acoustic noise injections, from the
underlying nonlinear nonstationary data is achieved relying on the adaptive
nature of tvf-EMD and on the different persistency of the perturbation with
respect to the underlying seismometer data.

• In 3.3 the local Hurst exponent was computed for an array of 38 seismometers
to characterise the site response of the Virgo ifo WEB. The analysis is able to
distinguish among seismometers placed in different parts of the room, namely
among the ones on top of a tower platform and not on it, evaluating time
series persistency.

• Results from the characterisation of time series of atmospheric 7Be can be
found in 3.4. The methodology described in 2.9 can extract the yearly IMFs
of 7Be, which phase shift with latitude can then be interpreted in term of
features of large scale atmospheric dynamics like e.g. the seasonal shift of
the Hadley cell, as also reported in [7]. Data were sampled by the IMS of the
CTBTO.

Other results, i.e. the investigation of noises properties with the Burg Maximum
Entropy Method and with adaptive algorithms, results from scattered light noise
hunting at Virgo, and results from the noise hunt of the 1/f 2.5 broadband noise
affecting Virgo during the commissioning phase are instead reported in Appendixes
A C F and G, respectively.
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Figure 3.1: Top: NR waveform in purple noise (blue) and waveform extracted with
the adaptive algorithm tvf-EMD (red). Parameters used in this case are ξ = 0.1,
n = 35, Hthr = 0.1. Bottom: Comparison of clean NR waveform (x(n), in blue)
with extracted signal (s(n) red), after modes of the purple noise wpurple have been
classified based on their persistency and subtracted.
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Figure 3.2: Top: HHT of the data, i.e. NR waveform in purple noise. Bottom:
HHT zoomed in the frequency range 0 − 1000Hz. The sweep in frequency of the
chirp signal is visible. The colorscale gives the amplitude of the oscillatory modes,
as described in Equation 3.2.

3.1 Testing: NR Waveform in Purple Noise
The algorithm developed in the framework of this Thesis has been firstly tested
on a Numerical Relativity (NR) waveform 1, namely a chirp signal, s(n) buried in
purple noise wpurple(n).

x(n) = s(n) + wpurple(n) (3.1)

The sampling frequency is fs = 16384Hz. In Figure 3.1, top panel, is reported
how the chirp waveform s(n), in red, is extracted from x(n) with the adopted
methodology, i.e. how it is separated from wpurple(n). Figure 3.1, bottom panel,
compares the original NR waveform, x(n), in blue, with the extracted signal s(n),
in red. Beside some discrepancy toward the last cycles of the chirped signal, the
waveform is well reconstructed. This due to the adaptive nature of the tvf-EMD

1NR waveform data obtained from https://www.gw-openscience.org/events/
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algorithm and to the different persistency of the noise compared to the chirp signal.
The time-frequency representation of the data is obtained performing HSA on the
modes extracted with tvf-EMD, hence obtaining the HHT. Figure 3.2 top panel
reports the HHT of the NR waveform in purple noise, while in the lower panel
this is zoomed in the frequency band 0 − 1000Hz. The colour scale is normalised
to the maximum amplitude obtained, among the oscillatory modes. Is given in
logarithmic scale by

10log10A/Amax. (3.2)

Due to the fact that that the extracted signal is still slightly affected by mode
mixing, the IF frequency obtained in the HHT is also affected, showing a slight
oscillatory behaviour. The frequency sweep though is well tracked, among with
the correspondent amplitude modulation. It should be noted that, the IF being
defined for each time, the HHT has higher frequency resolution as opposed to
periodograms or wavelet based spectra [17, 18].
Further tests have been carried out with noises of higher spectral indexes, ranging
from blue to red (β = −1 to β = 2). Since the denoising step is based on the
antipersistency of the noisy IMFs, performances progressively worsen at higher
spectral indexes. Hence, the adopted methodology is best applied to strongly
nonlinear nonstationary time series corrupted by anticorrelated noise and in general
when noise and signal to be extracted exhibit different persistent behavior.
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Figure 3.3: Recordings from microphones, seismometer and accelerometers moni-
toring Virgo NEB during the fourth acoustic noise injection. Highlighted in red are
the time series analysed with the methodology described in 2.9. Figure obtained
with DataDisplay

3.2 Adaptive Denoising of Acoustic Noise Injec-
tions

As described in Chapter 1 many sources of noise can affect the sensitivity of ground
based interferometers such as Virgo and LIGO in different frequency bands, some
relevant examples being thermal noise, quantum noise, seismic noise, Newotnian
noise and infrasound atmospheric noise [12, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
8, 55, 56, 57, 1, 58, 3, 59, 2]. In particular, seismic noise can limit interferometers
sensitivity and impulsive events such as earthquakes can even lead to unlocks [60].
Hence, to monitor the environment surrounding the detector, many sensors such
as microphones, seismometers and accelerometers, deployed both indoor and out-
door the detector facility to monitor natural and anthropogenic sources of noise,
continuously sample data in the form of time series.
The methodology developed in the framework of this Thesis, based on the adap-
tive algorithms EMD [17, 61], tvf-EMD [6] and on fractal analysis [37, 5], and
described in Chapter 2 (see Figure 2.7) has been applied to data from a seismome-
ter monitoring the NEB of the Virgo ifo, which is located near Cascina (Pisa),
during four different acoustic noise injections performed for detector characterisa-
tion purposes. In Figure 3.3 it can be seen the effect of the acoustic perturbation
on sensors monitoring NEB, i.e. on microphones, on a seismometer and on ac-
celerometers. It is found that the adopted approach can achieve separation of the
seismic perturbation induced by the acoustic noise injection from the underlying
nonlinear nonstationary recordings of the seismometer monitoring the NEB. The
effect of the acoustic perturbations on the seismometer monitoring NEB have been
further quantified computing the local Hurst exponent H(t) of seismometer data.

49



For a detailed description of how H(t) is computed see [5]. Evaluated around the
time of the acoustic noise injection, H(t) tracks changes in the persistency of all
components of the triaxial seismometer, as expected. Notably, it is found that the
changes in persistency are of the same order of the threshold chosen to achieve de-
noising, i.e. Hthr. This suggest that fractal analysis could be used to automatically
select a threshold value for denoising. Though further research is needed in this
regard.

3.2.1 Dataset

Analysed data were collected at the NEB of the Virgo ifo site, near Cascina (Pisa)
on June 22nd, 2018. The acoustic noise injections were performed for detector
characterisation purposes, i.e. to measure the reverberation time of NEB. Mea-
surements were performed with two Brüel & Kjær infrasound microphones model
4193-L-004 [62], that have a flat response down to 0.5 Hz, connected to two am-
plifiers NEXUS 2690 [63] operating on a bandwidth from 0.1Hz to 100kHz. The
two microphones were placed at the two extremities of the NEB. In total, two 14
inches balloons and two firecrackers (Raudi mod. Jupiter, art. 1057) were blew
up and each explosion was recorded by the two microphones simultaneously. The
balloon explosions were too weak compared to the background noise and only the
signals given by the firecrackers were enough high to allow the RT60 estimate [64].
It has been shown in the Virgo logbook entry n. 41940 [65] that the strongest
firecracker impulse was also seen by others environmental sensors inside NEB (i.e.
accelerometers, seismometers, microphones) which continuously monitor the inter-
ferometer environment [47] and are used for the detector noise characterization
studies [66].
The data analysed in this Section are sampled by one triaxial broadband seis-
mometer (Guralp 40 T 60 s with flat velocity response from 0.17 Hz to 50 Hz [67]),
monitoring along the north/west arm direction (N,W) and in the vertical direction
(V), with sampling frequency of fs = 1000 Hz. The sensor is located on the NEB
building concrete slab supporting the test mass suspension and vacuum chamber.
The times of the four impulsive events, mentioned above, are:

- First balloon explosion: 7 14’ 42” (UTC)

- Second balloon explosion: 7 16’ 18” (UTC)

- First firecracker explosion: 7 18’ 50” (UTC)

- Second firecracker explosion: 7 34’ 21” (UTC)

No missing data were present. A time interval t = 8 s has been chosen for the
analysis. i.e. data length is N = 8000.

3.2.2 Results of Adaptive Denoising

Figures 3.4 3.5 3.6 and 3.7 show the obtained results for the denoising of seismome-
ter data during the four different acoustic noise injections. From top to bottom
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Figure 3.4: First acoustic noise injection: In the left panel, the original seismometer
data x(n) are shown in blue while in red is shown the sum of extracted signal s(n)
and trend terms T (n). In the right panel is instead shown the extracted seismic
perturbation r(n).

Figure 3.5: Second acoustic noise injection: In the left panel, the original seis-
mometer data x(n) are shown in blue while in red is shown the sum of extracted
signal s(n) and trend terms T (n). In the right panel is instead shown the extracted
seismic perturbation r(n).
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Figure 3.6: Third acoustic noise injection: In the left panel, the original seismome-
ter data x(n) are shown in blue while in red is shown the sum of extracted signal
s(n) and trend terms T(n). In the right panel is instead shown the extracted
seismic perturbation r(n).

Figure 3.7: Fourth acoustic noise injection: In the left panel, the original seis-
mometer data x(n) are shown in blue while in red is shown the sum of extracted
signal s(n) and trend terms T(n). In the right panel is instead shown the extracted
seismic perturbation r(n).
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are shown results for the three different components of the Triaxial seismometer
sampling around the time of the acoustic noise injection. In the left panel, the
original seismometer data x(n), where N = 1 . . . 8000, are shown in blue while su-
perimposed in red is shown the sum of extracted signal s(n) and trend terms T (n).
In the right panel is instead shown the extracted seismic perturbation r(n). The
signal s(n) and noise r(n) term are the sum of persistent/antipersistent modes,
where persistent is relative to the chosen value of Hthr. The parameters used are:
bandwidth threshold ξ = 0.1, B-spline order n = 26, threshold on modes Hurst
exponent Hthr = 0.3. The adopted methodology allows to separate the nonlinear
and nonstationary perturbation r(n), induced by the acoustic noise injection, from
the nonlinear nonstationary seismic signal s(n).

3.2.3 Local Hurst Exponent of Seismometer Data

From Figures 3.4 3.5 3.6 and 3.7 it can be seen how, in unperturbed conditions,
seismometer data x(n) shows persistent behaviour while antipersistent behaviour
is characteristic of perturbed conditions, i.e. during the noise injection. To fur-
ther investigate and quantify such behaviour, the local Hurst exponent, H(t), of
x(n) have been evaluated. A local Hurst exponent H(t) can be obtained with a
procedure similar to DFA, using sliding windows of small size δ [5]. Evaluated
at windows of suitable size, H(t) allows to monitor changes of persistency in the
seismometer data x(n). The scale chosen is δ = 10, corresponding to a sliding
window of δt = 10ms over which H(t) is evaluated. Linear detrending have been
performed in each window. Obtained results are shown in Figure 3.8 for the three
components of the seismometer monitoring NEB during the loudest noise injection,
i.e. the third one. It can be seen that local Hurst exponent H(t), evaluated using
small sliding windows of δt = 10ms, allows to track changes of persistency in the
seismometer data. Figure 3.8 shows a change in persistency in all three compo-
nents N,V,W of the seismometer data, indicative of red noise in non perturbed
conditions and of pink noise during the acoustic noise injection, recovering to red
noise after the perturbation has passed.

3.2.4 Completeness of tvf-EMD in the Frequency Domain

Finally, to characterise the completeness property of tvf-EMD algorithm, i.e. the
fact that summing up extracted modes exactly recovers the original data, in the
frequency domain, Figure 3.9 and 3.10 shows the Fourier spectra of seismometer
recordings (only vertical component shown) during the third noise injection. Su-
perimposed are instead the spectra of extracted modes. It can be seen how the
extracted modes accounts for different portions of the Fourier spectra. Since in
the tvf-EMD algorithm the maximum number of modes to be obtained and the
threshold on their bandwidth can be selected as input, parameters could be tuned
to obtain modes explaining a portion of the Fourier spectra in a given band of
frequency.
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Figure 3.8: Local Hurst exponent H(t) of the three components of the triaxial
seismometer, recording around the loudest acoustic noise injection, i.e. the third
one, performed at NEB. From top to bottom are shown results for the N,V and W
component respectively. Red pink and white lines represent values of H typical of
red, pink and white noise. Change in persistant behaviour is evident at the time of
the injection, where a sudden drop ∆H(t) occurs. It is interesting to notice that
∆H(t) is of the same order of Hthr selected to achieve denoising.
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Figure 3.9: Shown are the spectra of obtained persistent oscillatory modes, i.e.
having a H > Hthr while in black is the Fourier spectra of the input time series
x(n).
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Figure 3.10: Shown in green are the Fourier spectra of obtained antipersistent
oscillatory modes, i.e. having a H < Hthr while in black is the Fourier spectra of
the input time series x(n)
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Figure 3.11: Hilbert Huang transform of triaxial seismometer data recorded during
the third noise injection. Shown are results for the West arm direction component.
High frequency modes are excited due to the injection, lasting for approximately
δt = 2s. The colour scale is given in logarithmic scale by the relative amplitude A
of the modes with respect to the maximum amplitude Amax.

3.2.5 Hilbert Huang Transform and Denoising Threshold
Parameter

Figure 3.11 shows the HHT of seismometer data from the third acoustic noise in-
jection (only W component shown). HHT is obtained applying HSA to the modes
extracted with tvf-EMD. The obtained IF show that high frequency oscillatory
modes are excited due to the injection, lasting approximately δt = 2s.
The adopted methodology was useful to adaptively extract the seismic noise wave-
form r(n), sum of antipersistent modes, induced by the acoustic noise injection,
from the underlying nonlinear nonstationary seismometer data s(n) given instead
by the sum of persistent modes. This is achieved relying both on the adaptive
nature of the tvf-EMD algorithm and on the different persistency of the data at
the time of the injection compared to the overall seismometer recordings. Such a
change in persistent behaviour is evident at the time of the injection and it was
further quantified computing the local Hurst exponent H(t), as can be seen in
Figure 3.8. Further testing is needed to determine which input parameters, Hthr,
n, ξ and number of modes achieve the best separation of perturbation signals from
background signals. This could be done evaluating the output in term of standard
denoising performance estimators such as the ones defined in [19], namely signal to
noise ratio, mean squared error, mean absolute error, crosscorrelation, and is left
to future work.
Regarding the choice of Hthr = 0.3, it is interesting to notice that the variation
∆H of the local hurst exponent computed for the seismometer recordings, i.e. for
x(n), around the time of occurrence of the noise injection, is similar to the value
of Hthr chosen to achieve denoising (see Figure 3.8 ).
Further studies are needed to test if choosing an Hthr ' ∆H gives the best denois-
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ing performances according to parameters such as the ones defined in [19]. If this
is the case, fractal analysis could be carried out around noisy periods in the data,
e.g. around periods of glitches of the instrument, providing a ∆H. This value
could be then given in input to the tvf-EMD based algorithm to adaptively extract
and characterise the waveform of the given nonlinear nonstationary perturbation,
i.e. for glitch characterisation and removal.
Regarding detector characterisation, the local Hurst exponent H(t) could be in
general used to monitor persistent behaviour of relevant channels, e.g. around un-
locks, or to monitor the properties of noises injected for detector characterisation
purposes, hence monitoring stable conditions of the interferometer over time. An
example in this regard is reported in appendix G, where the Hurst exponents and
their standard deviations have been computed for time series from various sensors
monitoring the Virgo ifo during a period of unusually high low frequency noise.
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Figure 3.12: Coordinates of the array of 38 seismometer monitoring Virgo WEB
for Newtonian Noise characterisation purposes. Figure taken from https://tds.
virgo-gw.eu/?content=3&r=14016.

3.3 Local Hurst Exponent for Seismometer Array
Monitoring WEB

The local Hurst exponent H(t) has been computed for data from an array of 38
seismometers, deployed at the Virgo West End Building for Newtonian Noise char-
acterisation purposes. The analysed period is from January 31st, 2018 to February
5th, 2018. As described in Chapter 2, the Hurst exponent H is a fractal index
quantifying the persistent behaviour of a time series, higher H corresponding to
higher persistency, i.e. slower oscillations around the mean. The Hurst exponent
can be computed using DFA and it can be computed locally using small sliding
windows. It has been computed in order to characterise the properties of the seis-
mometers data. For a detailed description on how to compute the Hurst exponent
locally see [5]. Hourly averages and averages of H(t) have been computed over
the whole analysed period. Results show that seismometers placed on a concrete
slab closer to the centre of the room systematically exhibit higher persistency than
the ones that are not placed on it. Seismometers placed next to the outer walls
also exhibit higher persistency. The one seismometer placed on the ceiling of the
tower exhibits instead very low values of persistency during the analysed period,
compared to the rest of the array.

3.3.1 Array of seismometers for Newtonian Noise Charac-
terisation

As also described in Chapter 1, mass density fluctuations generated either by seis-
micity and microseismicity or by density fluctuations of atmospheric air masses
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Figure 3.13: Left: Time series of 4s of data recorded from sensors 2 and 3 on
February 5th, 2018 at 00:00. Right: local Hurst exponent H(t) for the two time
series. Horizontal line represents values (starting from below) for white, pink and
red noise respectively. Sensor 2 is placed next to the outer wall of WEB while
sensor 3 is closer to the center of the room but not on the tower platform.

can induce a gravitational field which couples directly to the test masses of the
interferometer, giving rise to a noise referred to as Newtonian noise [3, 59]. This
gravitational field couples to each stage of the attenuation chain and also directly
to the mirror. As described in Chapter 1, in the Virgo interferometer the test
masses are isolated from the direct influence of seismic vibrations using a chain of
oscillators. Such chain mitigates the amplitude of vibrations of frequency f at the
suspension point by a factor (f/f0)

2 at each stage, where f0 is the frequency of a
single oscillator [68]. Newtonian Noise has been briefly described in Section 1.6.
For Newtonian noise cancellation studies, array of seismometers are typically de-
ployed around test masses.

3.3.2 Local Hurst Exponent of Seismometer Array

The local Hurst exponent has been computed for the 38 seismometers of the array,
monitoring WEB for six consecutive days from January 31st, 2018 to February 5th,
2018 with sampling frequency of fs = 500 Hz. In Figure 3.12 the coordinates of the
seismometers are shown. In particular, it can be seen how some sensors are placed
next to the outer wall of the room, while some are placed closer to the center of
the room but not on the platform hosting the tower in which the superattenuator
is placed. Finally some sensors are placed on top of the platform hosting the
tower. Sensor 35 is instead placed on the tower ceiling. The size of the window
used for H(t) computation is of 10 data points, corresponding to a time interval
of δt = 20 ms. Figure 3.13 shows 2000 samples from sensors 2 and 3, recorded on
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Figure 3.14: Top: Hourly averages of the Hurst exponents for the 38 seismometer
of the array over the whole sampling period. Bottom: Average values of the hourly
average Hurst exponents. Red dots represent sensors which are not on the tower
platform, while blue dots sensors that are on the tower platform. It can be seen
how sensors closer to the outer walls of the room exhibit higher persistency. Sensor
35, shown in green, is instead placed on the ceiling of the tower and is found to be
strongly antipersistent over the whole analysed period.

February 5th, 2018 at 00:00. Since the sampling frequency is fs = 500 Hz and
the samples are 2000, the time series in Figure 3.13 span a period of 4 s. Sensor
2 is placed next to the outer wall of WEB while sensor 3 is closer to the center
of the room but not on the tower platform. The local Hurst exponent is able
to discriminate the different persistency of seismometer data, sensor 3 oscillating
more rapidly around the mean and exhibiting therefore an antipersistent behaviour.
Due to this, sensor 2 exhibits higher persistency compared to sensor 3 during the
analysed period, as can be also seen on the right panel of figure 3.13.
Figure 3.14 shows the hourly average values of H(t) (top) and the average of such
hourly values (bottom) for the 38 seismometers of the array. It can be seen how
H(t) is able to discriminate the different positions of the seismometer in the room,
namely higher persistency is found in data from sensors closer to the outer walls
and placed on top of the tower platform of Virgo WEB compared to seismometers
placed in the middle of the room which are not on the tower platform.
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This is possibly due to the platform, on which the tower is placed, attenuating
the high frequency content of seismometer time series data, giving hence a higher
Hurst exponent for sensors on the platform.
Why also sensors closer to the outer walls of WEB have a higher Hurst exponent
compared to seismometers at the centre of the room but not to those on the plat-
form is not clearly understood. Seismometer number 35, which is instead placed
on the ceiling of the tower, exhibits a lower persistency compared to all the other
seismometers of the array.
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3.4 Yearly Modulation of surface 7Be activity con-
centration

In this Section are reported results form the analysis of data collected on a daily
basis by 28 stations of the International Monitoring System 2 (IMS), a worldwide
distributed network set up and maintained by the Comprehensive Nuclear-Test-
Ban Treaty Organisation (CTBTO), whose goal is to monitor over the CTBT
compliance. Beside monitoring atmospheric concentrations of Treaty relevant ra-
dionuclides, the IMS also detects naturally occurrent radionuclides. A notable
example in this regard is 7Be, a cosmogenic radionuclide which, due to its physical
and chemical characteristics, is a useful tracer of air masses of tropospheric and
stratospheric origin [69].

3.4.1 Dataset

Every monitoring station of the IMS is equipped with a filter and an air sampler.
The flow rate of the air sampler should be at least 500 m3h−1, measured at stan-
dard temperature and pressure (STP) during the sampling periods. It follows that
at least a total air volume of 10800 m3(500 m3h−1×24 h(−10%)) at STP will pass
through each filter sample. The total air volume collected is then normalised to
STP. The measurement system is based on high resolution gamma spectrometry
using a high purity germanium detector (HPGe) with a minimum relative effi-
ciency of at least 40%, and a peak resolution better than 2.5 keV at full width at
half maximum (FWHM) at the gamma ray energy of 1332 keV under operational
conditions [70]. Time series of 7Be and surface temperature considered in this Sec-
tion have been selected based on data availability. 7Be time series are sampled on
a daily basis (µBq/m3), while temperature time series refers to the daily means
(◦C). The length of a given time series depends on when the corresponding station
became operative, and the starting year of the time series varies from 2003 to 2009,
while all series end on March 2016. Time series length ranges from 2746 to 4711
daily samples. Other informations on the analysed 7Be dataset can be found in
[39]. In Table 3.1 the names and the exact location of the analysed stations are
listed.

3.4.2 Obtained Results: Trend, Yearly cycles and Outliers

Results of the analysis are hereafter summarised for the 28 stations of the IMS
network. In Figure 3.15 the trends in 7Be time series extracted adaptively are
shown. Trends are normalised to zero mean and unit variance for a better compar-
ison. A unique behaviour in terms of latitude cannot be discerned, possibly due to
the widely different locations and altitudes of the different stations of the network.
Monotonic trends, represented by a gradual change of the colour scale, are preva-
lent in both Northern and Southern hemispheres (divided by the horizontal black
line), while there are also non-monotonic trends that express an overall change of
7Be concentrations. It is important to notice that trend behaviour is not completely

2https://www.ctbto.org/map/
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ID Location Lat [◦N ] Long [◦E] Altitude [m a.s.l.]

RN76 Salchaket, Alaska, USA 64.67 -147.10 150
RN16 Yellowknife, N.W.T., Canada 62.48 -114.47 206
RN63 Stockholm, Sweden 59.41 17.95 0
RN61 Dubna, Russian Federation 56.74 37.25 118
RN71 Sand Point, Alaska, USA 55.34 -160.49 60
RN60 Petropavlovsk, Russian Federation 53.05 158.78 65
RN33 Schauinsland/Freiburg, Germany 47.92 7.91 1208
RN45 Ulaanbaatar, Mongolia 47.89 106.33 1729
RN17 St. John’s, N.L., Canada 47.59 -52.74 133
RN75 Charlottesville, VA, USA 38.00 -78.40 104
RN74 Ashland, KS, USA 37.17 -99.77 603
RN72 Melbourne, FL, USA 28.10 -80.65 10
RN37 Okinawa, Japan 26.50 127.90 106
RN79 Oahu, Hawaii, USA 21.52 -157.99 427
RN43 Nouakchott, Mauritania 18.14 -15.92 10
RN50 Panama City, Panama 8.98 -79.53 90
RN64 Dar Es Salaam, Tanzania -6.78 39.20 104
RN08 Cocos Islands, Australia -12.19 96.83 5
RN09 Darwin, NT, Australia -12.43 130.89 32
RN26 Nadi, Fiji -17.76 177.45 31
RN06 Townsville, QLD, Australia -19.25 146.77 7
RN23 Rarotonga, Cook Islands -21.20 -159.81 5
RN10 Perth, WA, Australia -31.93 115.98 31
RN01 Buenos Aires, Argentina -34.54 -58.47 31
RN47 Kaitaia, New Zealand -35.07 173.29 86
RN68 Tristan da Cunha, United Kingdom -37.07 -12.31 64
RN04 Melbourne, VIC, Australia -37.73 145.10 31
RN46 Chatham Island, New Zealand -43.82 -176.48 22

Table 3.1: ID code, exact location and altitude of CTBTO International Monitoring
System stations analysed.
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Figure 3.15: 7Be adaptive trends as obtained from the residual term of EMD for
the 28 stations of the IMS network. Stations are ordered by latitude and data have
been normalised to zero mean and unit variance for a meaningful comparison. The
horizontal black line divides the Northern hemisphere from the Southern one, while
the shaded areas represent periods where data are not available. The colour scale
is the height of the adaptive trend.

determined for those time series that have a shorter length, since their behaviour
before the date they became operative is not known. Furthermore, beside choosing
a high number of sifting iteration no attempt was made to mitigate end effects
during the trend estimation step with EMD [18]. End effects are clearly visible in
Figure 3.15 for the stations RN60 and RN01, where a sudden change in the trend
occurs at the right end of the time series. 7Be trends have been also cross-correlated
with the temperature ones. Even though the majority of correlations are high, a
clear pattern cannot be evinced. In Figure 3.16, the annual IMF of 7Be activity
concentration is shown for all the analysed stations. To meaningfully compare the
different yearly oscillations, they have been normalised to zero mean and unit vari-
ance. Maxima and minima alternate regularly and appear to be shifted in time
both in the Northern and Southern hemispheres. Peaks of the annual oscillation
are almost regularly delayed going from the equator to high latitudes, and the same
occurs going from the equator to low latitudes. Such behaviour is possibly related
to shifting of the Hadley cell and of the intertropical convergence zone (ITCZ), as
also noted in [7]. It should be noted that the considered stations are not uniformly
distributed around the globe, and latitudes are not continuous from the top to
the bottom of Figure 3.16. Furthermore, stations RN79, RN26, RN06, RN23, and
RN04 exhibit the highest value of the yearly peak in 2010, while RN47 in 2009.
Due to their locations, this could be possibly related to El Niño event occurred
in 2009-2010. To better quantify though, further studies are needed, employing
both atmospheric transport models and data of 7Be production, e.g. cosmic rays
variability due to the solar cycle. Furthermore, while the analysis carried out in
this Thesis primarily focused on characterising only the yearly cycle of 7Be activity
concentration, other periodicities can be found, see for instance [71]. In Figure 3.17
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Figure 3.16: 7Be annual IMF of the 28 stations of the IMS network. Stations are
ordered by latitude and data have been normalised to zero mean and unit vari-
ance for a meaningful comparison. The horizontal black line divides the Northern
hemisphere from the Southern one, while the shaded areas represent periods where
data are not available. The colour scale is the amplitude of the oscillations.
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Figure 3.17: Occurrence of outliers higher than 3σ (yellow) and lower than −3σ
(cyan) in 7Be residuals, for the 28 stations of the IMS CTBT network. Stations
are ordered by latitude. The horizontal black line divides the Northern hemisphere
from the Southern one.
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Figure 3.18: Cross-correlations between 7Be and temperature IMFs of the annual
cycle. Dashed vertical lines represent stations with bad quality data.

the occurrence of outliers higher than 3σ (yellow) and lower than −3σ (cyan) in
7Be residuals is shown. In general low values are not frequent, meaning a very rare
occurrence of high drops in 7Be concentrations. Furthermore, the number of out-
liers in the Northern hemisphere represents the 61.4% of the total outliers. Almost
20% of the Northern hemisphere’s outliers are above 4σ, and 4% is above 5σ. Per-
centages are lower for the Southern hemisphere, and the number of outliers above
4σ and 5σ is almost half the number of the corresponding Northern outliers, even
though Southern hemisphere stations are the three quarters of the Northern hemi-
sphere ones. Residuals correlations have been estimated via the Hurst exponent
H. All values of H ranges between ∼ 0.8 and ∼ 1.0, indicating strong long-range
autocorrelations of residuals time series. Moreover, denoising performance param-
eters introduced in Section 2.9 are evaluated. The performance of the denoising
step resulted to be quite good, with MSE and MAE values less than one for
all the time series. SNR and PSNR values are not very high (but greater than
one), while xcorr value is in the range 0.4-0.7. These values are possibly due to
the time series being very noisy and short. Finally, the yearly IMFs extracted
from temperature data have been analysed. The number of stations is now less
than 28 since some stations had a poor quality temperature time series, i.e. wide
gaps and/or unphysical values. A simple seasonal pattern is observed in this case
with a six-month shift between the Northern and Southern hemispheres maximum
temperature, as expected. Cross-correlations between temperature and 7Be annual
IMFs have also been evaluated and are shown in Figure 3.18. High correlations
have been found in all but two stations, namely RN06 in the Southern hemisphere
and RN17 in the Northern hemisphere. These two stations are characterised by a
non-perfect annual oscillation, as can be seen in Figure 3.16, where with a perfect
yearly oscillation a sinusoid with period of one year is intended, not affected neither
by non-linearity nor by non-stationarity. Dashed vertical lines represent stations
with bad quality data. In summary, data of 7Be and temperature, sampled daily
at 28 different stations of the IMS of the CTBTO and worldwide distributed, have
been analysed and characterised using adaptive and fractal methodologies. Oscil-
latory modes both on shorter and longer scales than the yearly ones were obtained,
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according to the denoising criteria. Such modes had periods ranging from three
months to up to three years and were removed in order to obtain the residual time
series, from which outlier occurrence is evaluated. The analysis then focused on
characterising phase and amplitude of the extracted yearly cycles, which showed a
different pattern at different latitudes, the annual peak being delayed for stations
at higher latitudes, both in the Northern and Southern Hemispheres, and this is
probably due to Hadley cell and the Intertropical Convergence Zone dynamics. A
higher value of the yearly cycle is also found in those stations influenced by the
2009-2010 El Niño event. Finally yearly cycles of 7Be and temperature data have
been cross-correlated, yielding high correlation values in general.
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Chapter 4

Discussion

In the framework of this Thesis a methodology of time series analysis based on
fractal and adaptive algorithms such as EMD and tvf-EMD has been developed
and applied to time series data from different physical systems in order to validate
its output based on features extracted from the analysed data. Beside adaptive
methodologies, the local Hurst exponent has been computed to evaluate persis-
tency in the data, the Hurst exponent being a fractal index used to estimate time
series persistency. Main part of the analysis focused on seismometer data from
seismometers monitoring the Virgo ifo both for detector characterisation purposes
and for Newtonian Noise cancellation purposes. In the latter case data from an
array of 38 seismometers were analysed. For this reason, in Chapter 1 an overview
of the operational principles of the Virgo ifo were given, with particular focus on
seismic noise, newtonian noise and on the methodologies adopted to mitigate them,
both from the experimental point of view and from the data analysis point of view.
After that, in Chapter 2, the methodologies adopted for data analysis were widely
described. First, HSA has been described, and the concepts of IA, IF and IB were
introduced. After that, the EMD algorithm was described widely. Advantages
and drawbacks, such as mode mixing, of this algorithm were discussed. Ensemble
methodologies to mitigate mode mixing were also described, along with a test for
significance of extracted IMFs against white noise. After that the tvf-EMD algo-
rithm, which is the one used in this Thesis for the extraction of oscillatory modes,
was described in detail. The main advantage of this algorithm is that, stopping
the sifting procedure based on a threshold on modes IB, the mode mixing problem
is significantly mitigated. Relevance of extracted IMF was established computing
their Hurst exponent by means of Detrended Fluctuation analysis algorithm.
Thanks to the completeness property of adaptive algorithms, namely that summing
the extracted modes exactly recovers the original data, adaptive denoising could
be performed on the data. Denoising performance parameters were also introduced
in Chapter 2 and were used to evaluate denoising performance in 7Be data.
Both the Hurst exponent and DFA were defined and described in Chapter 2. Hav-
ing established mode’s relavance allowed to separate relevant modes of oscillation
from noise related ones, which are typically found to be antipersistent and rapidly
oscillating around their mean value.
Applying HSA to IMFs extracted by adaptive algorithms allows to obtain a time
frequency representation of the data called HHT. The HHT shows how the IF and
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the IA of the extracted modes varies in time. It has higher resolution compared to
Fourier based periodograms, since frequency is defined for each time. No window-
ing nor averages of spectra is needed in this case.
Finally, in Chapter 3, the methodologies described in Chapter 2 were applied to
data from real physical systems. The aforementioned methodologies have been
applied to

• Denoising of GW chirp signal in purple noise for testing purposes.

• Seismometer data monitoring Virgo NEB during four acoustic noise injections
performed for detector characterisation purposes

• Seismometer data from an array of 38 seismometers monitoring Virgo WEB
for Newtonian Noise characterisation purposes

• 7Be data acquired from the IMS of the CTBTO.

Regarding the testing phase, it is found that denoising based on persistency is best
applied when the signal to be extracted, the GW chirp, exhibit different persistent
behavior compared to the noise that corrupts the time series. Performances de-
crease in fact for noises of higher spectral index. For purple noise though, the chirp
signal is correctly extracted as can be seen from Figure 3.1 where it is compared
with the noise free NR waveform.
The adopted methodology has been then applied for the denoising of seismometer
data recording during four different acoustic noise injections. In this case the seis-
mic perturbation due to the injection is again extracted correctly from the time
series data, which are nonlinear and nonstationary, due to the fact that the pertur-
bation has a different persistent behavior compared to the underlying seismometer
data. This is also highlighted in Figure 3.8 where a drop in Hurst exponent is vis-
ible around the time of the injection. This suggest that computation of the local
Hurst exponent could be used to select an optimal threshold Hthr for the denoising,
but further testing is needed in this regard.
Regarding the array of 38 seismometers only fractal analysis was performed, and
the local Hurst exponent has been employed to characterise persistency of the data.
It is found that sensors in different parts of the room have different persistency
depending on whether they’re placed or not on the concrete slab hosting the plat-
form where the tower containing the superattenuator is placed or if they are in
proximity of WEB outer wall.
Then, the yearly component of 7Be time series was extracted using tvf-EMD and
denoising based on persistency. It is found that the yearly component of the 28
analysed stations of the IMS have a phase shift which is latitudinally dependent,
feature that can be reconciled with large scale features of atmospheric dynamics
such as the seasonal shift of the ITCZ and of the Hadley cell. High values of the
yearly component were found for stations possibly influenced by the 2009-2010 El
Niño event, though this need further research. Furthermore, outlier occurrence
has been characterised and denoising performance parameters evaluated for this
dataset, showing good performances of persistency based denoising.
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Further studies regarding synthetic noise properties and investigations of noises
affecting the Virgo ifo sensitivity were also conducted.
In this regard, additional results are reported in Appendices regarding

• Spectral index evaluation with the Burg Maximum Entropy Method: In Ap-
pendix A is shown how Fourier and Lomb Scargle periodograms underesti-
mate spectral indexes β > 2 and how a possible solution to the problem is to
use the Burg Maximum Entropy Method for spectral index estimation.

• Hurst exponent estimation of fractional noises with EMD: In Appendix C it
is shown how EMD can be used to estimate the Hurst exponent of noises,
thanks to the similarity of the spectra of extracted IMFs.

• Scattered light noise hunting in Virgo with EMD: In Appendix F it is shown
how EMD algorithm can be applied to Virgo data in the attempt to quickly
identify sources of scattered light noise, due to movements of reflecting sur-
faces causing a phase noise in the laser beam.

• 1/f 2.5 Noise Hunting with Multifractal Detrended Fluctuation Analysis Char-
acterisation of Local Hurst Exponent of C11 data: In G some results are
shown from a characterisation of the 1/f 2.5 broadband noise, affecting Virgo
during the commissioning phase, computing the local Hurst exponent of
downsampled time series from auxiliary channels monitoring Virgo during
the Commissioning run C11.
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Appendix A

Estimate of spectral indexes β > 2
with the Burg Maximum Entropy
Method

In this Appendix is described how periodogram based methods, such as the FFT
and the Lomb periodogram, underestimate spectral indexes β > 2, and a possible
way to solve this issue, based on the Burg Maximum Entropy Method (MEM), is
tested on synthetic time series.
Results obtained with a software for time series analysis, referred to as Multi-
step Time Series Analysis (MTsA) [39] which is based on the Lomb periodogram
method, are compared with the ones obtained following the approach, based on
MEM, from [72]. MTsA allows to separate time series deterministic components
from random fluctuations, even when data are affected by missing data. It does so
making use of the Generalised Lomb-Scargle Periodogram (GLS) [73] which natu-
rally provide a threshold to separate signal from noise in presence of uncorrelated
Gaussian noise. Once the harmonic components have been identified and filtered
out, residual time series is obtained. Then, MTsA performs detrended crosscorrela-
tion analysis [74] of residual time series and estimates their Local Hurst exponent
Ht, allowing to obtain quantitative information on long term correlation [5]. A
more detailed description of MTsA software, along with results from its applica-
tion to real geophysical datasets, can be found in [38, 42, 39, 40, 41]. A flowchart
of such algorithm is reported in Figure A.1.
A process having power spectrum that follows a power law of the type

S(ν) ∼ ν−β (A.1)

is said to have spectral index β, where β = 0, 1, 2 corresponds to white, pink, and
red noise, respectively. One exemple of physical system where different spectral
indexes are present in geophysical data can be found in [72], where Burg-MEM
technique is applied to ionospheric amplitude scintillation data taken from the
MARISAT satellite. In this case, the smoothness of the Burg spectra allows to
better track, compared to periodograms results, the onset of moderate scintillation
and its development into fully saturated scintillation ([72] Figure 7a) in terms of
changes of spectral slope ([72] Figure7b).
One possible way to estimate the power spectrum of a time series is from the
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Figure A.1: Flowchart illustrating the different steps of MTsA software [39].

squared magnitude of the Fourier Transform (FT) of the data, i.e. the periodogram.
Any finite data set is equivalent to an infinite data set multiplied for a rectangular
window W which is unity inside the interval of data availability and zero outside.
Since the Fourier transform of a rectangular window W has the form [72]

FT [W ] ∼ sin(πf)/πf (A.2)

and has both a narrow central lobe and high side lobes, this increase the power at
points away from the central lobe. Is found that spectral indexes β > 2 can’t be
obtained using a rectangular window, which is the one that provides the narrowest
main lobe and hence the best spectral resolution, limited by the width of the main
lobe, given by (N∆t)−1 Hz [72].
Many other windows have been designed to offset this high side lobe behavior. The
rectangular window gives the narrowest main lobe while other windows designed
to reduce side lobes do so at the expense of increasing main lobe width [72]. Never-
theless, some windowing is essential and spectral estimation of red noise processes
using periodograms requires the use of some nonrectangular window [72]. To eval-
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Figure A.2: Comparison of spectral index estimation with different methods. Top:
Comparison of Fourier and Burg estimates of spectral indexes (left) and Lomb-
Burg estimates (right) for dat length N = 103. Bottom: Same as before, but for
data length N = 104. Periodogram based methods tend to underestimate spectral
indexes greater than two.

uate such effects also on the Lomb spectrum, which can be considered both as a
Fourier Method and a Least Square Method [75], two ensemble of 400 time series
having length of 103 and 104 respectively, and having spectral index ranging from
[-2,...,5] at intervals of 0.5, has been synthetically generated following the procedure
described in [72], that is low-pass filtering gaussian white noise with filters having
frequency response tuned in order to obtain as output time series with power-law
spectrum in a selected frequency range [76].
The shyntetic time series were than normalised to zero mean and unit variance.
The so obtained ”coloured” noise were analysed through their Fourier, Lomb and
Burg Maximum Entropy (MEM) spectra. The spectral index β for each case is
obtained from the slope of the straight lines fitted to the spectra versus frequency
in logarithmic coordinates.
As expected, Burg spectrum provides the most accurate results among the three
techniques, yielding precise estimation of spectral index up to β = 5, while the two
Fourier Based methods applied can’t estimate spectral index greater than β = 2
when no windowing is performed. Results from the simulation are shown in Figure
A.2. It is found that for N = 104, the estimates of β are less scattered around
their true value compared to the case N = 103. Some of the synthetic time series
of length N = 1000 used for this study are shown Figure A.3 and as can be seen
they exhibit different persistency.
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Figure A.3: Synthetically generated noises of length N = 103, having zero mean
and unit variance. Spectral index β ranges from -2 (top left) to 5 (bottom right),
increasing by 1.
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Appendix B

Fractional Gaussian noise (fGn) and
fractional Brownian motion (fBm)

In this Thesis work the Hurst exponent have been used as a threshold parameter
for denoising purposes. Generally though, the Hurst exponent H is a parameter
widely used to quantify long term correlation, or ”memory” in a time series. In this
case, the exact meaning of H depends on whether a signal is fractional Gaussian
noise (fGn) or fractional Brownian motion (fBm), since while H values indicate
the correlation structure of a fGn signal, for a fBm signal the correlation structure
described by H values refers to the increments resulting from differencing the time
series [77],[78]. To classify a signal as fGn or fBm before proceeding with its fractal
analysis is hence needed, as described for example in [79][80]. Fractional Gaussian
noise (fGn) is a stationary long-memory process while fBm is a non-stationary,
long-memory process. A more precise definition of fGn involves its autocorrelation
function. As can be found in [81] [18], the process

xH [n], n = ...,−1, 0, 1, ... (B.1)

is a fGn of index H if and only if it is a zero-mean Gaussian stationary process
whose autocorrelation sequence is

rH[k] =
σ2

2
(|k − 1|2H − 2|k|2H + |k + 1|2H). (B.2)

Summing data of a fGn time series will produce a fBm time series. Conversely the
increments of a fBm process, obtained by subtracting each value from the prior,
form a fGn signal [80]. As described earlier, different values of H indicate different
types of long-memory. Following [77]:

• H = 0.5 indicates absence of long-memory and data points are uncorrelated
with each other (the process is random) or are correlated only at very small
scales.

• When 0 < H < 0.5 the Hurst exponent indicates an anti-correlated or anti-
persistent process (negative long-range correlation) for cases of fGn and fBm,
respectively. In particular increases in the signal (for fGn) or in the incre-
ments of the signal (for fBm) are likely to be followed by decreases and
conversely decreases are likely to be followed by increases
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Figure B.1: In this figure an example of how Fractional gaussian noise and frac-
tional Brownian motion can be obtained from one another summing or differenti-
ating is shown. Figure taken from [79].

• Finally when 0.5 < H < 1 this indicates a correlated process for fGn or a
persistent process for fBm. In this case, increases/decreases in the signal (for
fGn) or in the increments of the signal (for fBm) are likely to be followed by
further increases/decreases (positive long-range correlation).

Anti-persistent and persistent processes contain structure that distinguishes them
from truly random sequences of data. Taking the Fourier transform of the auto-
correlation function of a fGn yields its power spectrum density

SH(f) = Cσ2|ei2πf − 1|2
∞∑

k=−∞

1

|f + k|2H+1
−→ Cσ2|f |1−2H , (B.3)

for H 6= 1/2 when f → 0 [18]. fGn is then a model for power-law spectra at low
frequencies. From its spectral properties, the particular value H = 1/2 delineates
two domains with distinct behaviours.

• For 0 < H < 1/2, the power spectral density SH(0) = 0, and the spectrum
is high-pass.

• For 1/2 < H < 1, we have SH(0) =∞ with a 1/f -type spectral divergence.

Over the Nyquist frequency band it holds the following relation in log-log coordi-
nates

logSH(f) ∼ (1− 2H)log|f |+ C, (B.4)

for most frequencies −1/2 ≤ f ≤ 1/2 [18].
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Appendix C

Hurst Exponent of fGn and fBm
noises: EMD based estimation

An ensemble of 4000 synthetically generated time series of a given Hurst exponent
was generated, following the procedure described in [82] and [18], with the purpose
of evaluate the characteristics of IMFs obtained decomposing such processes with
EMD and to test methods for Hurst exponent estimation.
Differently from [82], where fGn processes where generated via the Wood and Chen
algorithms [83], in this simulation fBm like time series of a given Hurst exponent
were generated using the algorithm described in [84] and then differentiated to
obtain fGn time series, as explained in Appendix B.
An example of the generated fractional noises, with Hurst exponent spanning from
0.1 to 0.9 is shown in Figure C.1.
The IMFs showing band pass behaviour (index k > 2) have spectra with similar
shape, apart from some shift in abscissa and ordinate [82]. This allows to look for
self similarity in IMFs spectra, according to the relation

Sk′,H(f) = ρ
αH(k′−k)
H Sk,H(fρk

′−k
H ), (C.1)

where 2 ≤ k ≤ kmin, kmin being the smallest number of IMFs common to all the
time series of the ensemble.
The average spectra of the ensemble generated time series and of their pass band
IMFs are shown in Figure C.2, where the self-similarity property is evident.
Due to the self-similarity property, for a given H the following relationships can
be derived among the mode number k, the mode empirical variance VH [k] and its
mean period T̄H [k]

VH [k] = Cρ
2(H−1)k
H ' C22(H−1)k (C.2)

VH [k] = C ′(T̄H [k])2(H−1) (C.3)

even though ρH is reported to be slightly increasing with the Hurst exponent. The
empirical variance of an IMF of index k and Hurst exponent H, namely dk,H [n] is
given by

VH [k] =
1

N

N∑
n=1

(dk,H [n])2. (C.4)
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Figure C.1: Fractional Brownian motions (fBm) and fractional Gaussian Noises
(fGn), with Hurst exponent spanning from 0.1 to 0.9, at steps of 0.2. Data length
is N = 5 · 103

As described in [82] and [18], due to the peculiar properties of IMFs, namely that
extrema appear as alternating local minima and local maxima separated by only
one zero-crossing, their mean frequency (period) can be calculated counting the
number of zero crossings or alternatively counting the number of their extrema.
The latter approach has been chosen in this study, hence the period of an IMF has
been evaluated as the mean time difference occurring in between adjacent maxima.
The empirical relations introduced above, as a function of a given Hurst exponent,
have been used to test the ability of the EMD algorithm to estimate H. Results
are collected in Figure C.2, where the average spectra of the noises, for different
values of H, are reported in blue and are compared with the ensemble average
spectra of the IMFs, in which EMD decomposes them.
The EMD algorithm, although based on no ”a priori” assumption, like Fourier basis
or wavelet mother function, correctly estimates Hurst exponent for H ≥ 0.5, while
it overestimates it for H ≤ 0.5. This is due to the fact that for H ≤ 0.5 some of
the IMFs act as an ”active filter”, amplifying the lower frequency band [82]. This
behaviour was also found in the simulation presented in this study, since the IMFs
spectra (green) raise above the corresponding spectra of the full fGn process as can
be seen in Figure C.2 for H < 0.5.
This behaviour should be taken into account when preforming EMD analysis of
signals containing mostly high frequency, as remarked in [82].
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Figure C.2: Average PSD of fGn time series, in blu, compared to average spectra
of band pass IMFs, in green. The selfsimilarity is in this case evident and except
from the case H = 0.1 and H = 0.3 in all other cases the correct H can be obtained
from the spectra of the extracted IMFs.
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Appendix D

Bedrosian Product Theorem

Although the Hilbert transform exists for any function of Lp class, the phase func-
tion of the transformed function will not always yield a physically meaningful
instantaneous frequency.
The EMD algorithm helps in this regard since reducing the data into IMFs, i.e.
oscillatory functions having equal number of extrema and zero crossings and zero
mean, improves the chance of getting a meaningful instantaneous frequency. Though,
obtaining IMFs satisfies only a necessary condition, since additional limitations are
given by two theorems, the Bedorsian Product Theorem (BPT) and the Nuttal
theorem [18]. The BPT theorem is briefly described in this Appendix while more
details can be found in [85]. The BPT has important implications in the computa-
tion of the instantaneous frequency, since this has to be computed from the phase
function of the analytic signal, already defined in Equation 2.2 and here reported
for clarity

z(t) = x(t) + iH[x(t)] = a(t)eiφ(t) = a(t)cos[φ(t)] + ia(t) sin[φ(t)] (D.1)

For Equation D.1 to hold the Bedrosian Product Theorem [85, 18] must be re-
spected.
The Bedrosian theorem states that the Hilbert transform for the product of two
functions f(t) and h(t) can be written as

H[f(t)h(t)] = f(t)H[h(t)], (D.2)

where H[] is the Hilbert Transform, only if the Fourier spectra for f(t) and h(t)
are totally disjoint in frequency space. Furthermore the frequency range of the
spectrum for h(t) should be higher than that of f(t).
Hence according to the BPT, D.1 is true only if the amplitude a(t) is varying so
slowly that the frequency spectra of the envelope and the carrier waves are disjoint.
In this case

H[x(t)] = H[a(t)cosφ(t)] = a(t)H[cosφ(t)] = a(t) sinφ(t)] (D.3)

The proof of the BPT is reported in [85].
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Appendix E

B-splines

In the tvf-EMD algorithm, used for data analysis in this Thesis, B-splines are used
as a filter with time varying frequency cut off. B-splines and their properties are
hereafter briefly described.
Polynomial splines are especially useful to consider image data as a continuum
rather than a discrete array of pixels. Considering an image as a continuously
defined function is also often desirable for feature extraction such as contour de-
tection [86].
Schoenberg, who invented splines, also proved that any uniform spline can be repre-
sented in terms of a B-spline expansion, which uses shifted B-spline basis functions.
This B-spline representation turns out to be most convenient for performing signal
and image processing [86].
Splines were first described in 1946 by Schoenberg [87]. He showed how splines can
be used to interpolate equally spaced samples of a function and B-splines are intro-
duced as the basic functions by which polynomial splines are constructed [87, 88].
Splines are piecewise polynomials with pieces that are smoothly connected to-
gether. The joining points of the polynomials are called knots. For a spline of
degree n, each segment is a polynomial of degree n. Then, n + 1 coefficients are
needed to describe each piece. However, since there is an additional smoothness
constraint that imposes the continuity of the spline and its derivatives up to order
(n− 1) at the knots, there is only one degree of freedom per segment [88].
Hereafter only splines with uniform knots and unit spacing are considered.
The remarkable result, due to Schoenberg [87], is that polynomial splines s(x) are
uniquely characterised in terms of a B-spline expansion

s(x) =
∑
k∈Z

c(k)βn(x− k) (E.1)

which involves the integer shifts of the central B-spline of degree n denoted by
βn(x). The parameters of the model are the B-spline coefficients c(k).
As described in [88], B-splines are symmetrical, bell-shaped functions constructed
from the (n+ 1)-fold convolution of a rectangular pulse β0(x)
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Figure E.1: The B-splines of degrees 0 to 3 are shown. Figure taken from [88]

β0(x) =


1, if − 1

2
< x < 1

2
1
2
, if |x| = 1

2

0, otherwise

βn(x) = β0(x) ∗ β0(x) ∗ ... ∗ β0(x) (E.2)

where the convolution is carried out n+ 1 times. Each spline is uniquely described
by its sequence of B-spline coefficients c(k), which has the structure of a discrete
signal, even though the model is continuous [88]. A time domain expression for
the B-spline of order n is obtained in [88]

βn(x) =
1

n!

n+1∑
k=0

(
n+ 1

k

)
(−1)k

(
x− k +

n+ 1

2

)n
+

(E.3)

where the + indicated the one sided power function. This result shows that βn(x)
is a piecewise polynomial of degree n and that is differentiable up to order n.
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Appendix F

Scattered Light Noise Hunting at
Virgo with Empirical Mode
Decomposition

In the framework of this Thesis, Empirical Mode Decomposition was applied to
Virgo data also for scattered light noise hunting, i.e. for detector characterisation
purposes, following the approach described in [89].
Scattered light noise diminish the sensitivity of interferometric detectors and can
occur when a fraction of laser light is diffused by moving reflective surfaces, e.g.
mirrors located along the beam path Z, and then couples back to the main laser
beam. This effect can be seen in Figure F.1, where the Fourier spectra of DARM,
the differential arm motion, with and without scattered light are shown.
The recombined scattered light forms arch-shaped figures or fringes visible in
DARM spectrograms. The scattered light phase angle after reflecting once from
the scattering surface is given by [89]

φscattering(t) = 2
2π

λ
(x0 + δxsurface(t)) (F.1)

where x0 is the static optical path, as sensed by Position Sensing Devices, λ is the
laser wavelength and δxsurface(t) is the position of the moving object.
From the phase angle the predictors can be obtained, i.e. the fringes frequency,
computed with time derivative of Equation F.1

ffringe(t) =
2

λ
|vsurface(t)| (F.2)

where vsurface(t) is the velocity at which scattering surface is moving.
In case of multiple reflections, arches in DARM spectrograms at frequencies mul-
tiple of ffringe(t) appear since when light is reflected N -times before recombining
the phase angle is

φscattering(t) = 2N
2π

λ
(x0 + δxsurface(t)) (F.3)

And this generates N fringes in the DARM spectrograms, with frequencies

ffringeN(t) = Nffringe(t) (F.4)
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Figure F.1: Fourier spectra of DARM degree of freedom, with and without scat-
tered light noise affecting the sensitivity. Figure from [89]

As described in [89] Decomposing DARM time series with EMD and selecting the
appropriate IMF allows to correlate the predictors, which are computed based on
Equation F.2, from auxiliary channels sensing the positions of the reflecting sur-
faces with the IMF’s IA, since these are both functions of time. When applied to a
list of possible scatterers this allows to rank the most probable source of scattered
light noise.
In this regard, the methodology described in [89] was tested during multiple hard-
ware injections.

• An hardware injection was performed on August 22 2019 h 12:12:30 s when
a sinusoidal line having frequency of 0.1Hz was injected on auxiliary channel
Sa IB F0 X. Details regarding this injection can be found in logbook entry
n. 46744 of Virgo logbook1.

• Other noise injections were performed on October 03 2019 h.19:55:30s and
20:04:00s, when a sinusoidal line having frequency of 0.1Hz was injected
on auxiliary channel SNEB LC Z. In this case 200s and 120s od data were
analysed, respectively.

• Finally, a sinusoidal line having frequency of 0.1Hz was injected on auxiliary
channel SWEB LC Z on October 03 at 20:26:30s.

The methodology was tested on all Virgo channels having units of µm and having
sampling frequency of fs = 500Hz. As can be seen in Figure F.2, the hardware
injection, shown in the top panel, causes arch shaped figures to appear in the
spectrogram of one of the main degrees of freedom of the ifo, namely the power

1Virgo logbook can be found at https://logbook.virgo-gw.eu/virgo/?c=1
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recycling cavity length (PRCL) as is shown in the bottom panel. The methodology
described in this Appendix was applied to test whether in this case is possible to
identify the auxiliary channel Sa IB F0 X as the most probable source of scattered
light. In this regard, results are shown in figure F.3 where in this case the most
probable source of scattered light is correctly identified to be Sa IB F0 X. The
predictor from this channel is found to have the highest correlation with the IA of
the first IMF obtained decomposing DARM time series with EMD.
In Figure F.4 the other hardware injections on which the tool has been tested are
shown. In Figure F.5 the results obtained from the application of the methodology
are shown for the hardware injections of Figure F.4. The tool correctly ranks as
most probable cause of scattered light the channel SNEB LC Z ground corrected,
regarding the injections of October 03 2019 h.19:55:30s and 20:04:00s as can be
seen in top and middle panel. Bottom panel shows instead, that for the hardware
injection performed on October 03 at 20:26:30s, the most probable scatterer, the
one having the highest correlation, is found to be SBE SWEB diff bench MIR Z.
High correlations, ρ > 0.4 were found also for channels

• SWEB LC Z err ground corrected

• SWEB LC Z err

• SWEB LC Z

• SBE SWEB SA F0 diff LVDT Z

• SBE SWEB SA F7 diff LVDT Z

• SBE SWEB diff bench MIR Z.

Further tests are needed, in particular testing during periods in which scattered
light is affecting the sensitivity and the cause of scattered light noise is not known.

87



Figure F.2: Hardware injection shown in the top panel where a sinusoidal line is
injected in Sa IB F0 X. PRCL spectrogram is shown in the bottom panel, arch
shaped fringes are visible in red.

Figure F.3: Shown in yellow is the IA of the first IMF obtained decomposing
DARM with EMD while in blue the predictor for channel Sa IB F0 X is shown,
which resulted to have the highest correlation among all the auxiliary channels
tested.
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Figure F.4: The hardware injections performed on 3 October are shown. A sinu-
soidal line of frequency f = 0.1Hz was injected in auxiliary channel SNEB LC Z
and SWEB LC Z
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Figure F.5: Results from application of the tool for scattered light noise hunting are
shown. In yellow, the IA of the first IMF obtained decomposing DARM with EMD
is shown, while in blue the predictor for channels SNEB LC Z ground corrected
and SBE SWEB diff bench MIR Z, which resulted to be the most correlated among
the ones tested, are shown.

90



Appendix G

1/f2.5 Noise Hunting with
Multifractal Detrended Fluctuation
Analysis: Characterisation of Local
Hurst Exponent of C11 data

Fractal analysis was applied in the attempt to identify possible sources of the 1/f 2.5

noise which was affecting Virgo ifo during the commissioning run C11, started
12/10/2018 h 22:40:55 and lasting until /15/10/2018 h 08:00:00. The duration of
C11 is δt = 206345s. The 1/f 2.5 noise was a broadband noise severely affecting
Virgo sensitivity in the 20−100Hz frequency band and reducing the range of the ifo
of almost 15MPc. More details about such noise can be found at https://wiki.
virgo-gw.eu/Commissioning/OneOverFCube. In the framework of this Thesis,
fractal analysis was applied to all auxiliary channels from the standard detector
characterisation channel list during the period of C11, with the aim of flagging
either noises having a high value of Hurst exponent or that exhibit high standard
deviation of H and that hence have significantly different values of persistency at
different times. Data downsampled at 1Hz were analysed. A simple relation in
between the Hurst exponent and the spectral index of a selfsimilar noise of spectral
index β holds [79]

H =
β + 1

2
(G.1)

The procedure of how to compute the local Hurst exponent can be found in [5],
where it is explained how the Hurst exponent can be computed locally with a
procedure similar to DFA, but sliding windows of small scale, as also described in
Chapter 2. Figure G.1 shows some results of the analysis. The culprit are indicated
to be sensing and control channels of PR NE WE NI and WI mirrors, which had
a variable peristent behaviour during the analysed period, having a high standard
deviation in their Hurst exponent. Comprehensive results can be instead found at
https://tds.virgo-gw.eu/?content=3&r=14837. Further research is needed in
order to test whether the local Hurst exponent could be used to monitor stable
conditions of the ifo, possibly testing the algorithm on many auxiliary channels at
higher sampling rates, during stable conditions and around unlocks of the detector.
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